el-Dahr S S, Yosipiv I V, Lewis L, Mitchell K D
Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
Am J Physiol. 1995 Dec;269(6 Pt 2):F786-92. doi: 10.1152/ajprenal.1995.269.6.F786.
The present study was performed to evaluate the role of bradykinin, acting via B2 receptors, in the developmental rise in renal blood flow (RBF) and glomerular filtration rate (GFR) in the rat. Newborn rats were chronically treated from birth with the kinin B2 receptor antagonist HOE-140 (600 micrograms/kg sc, every 12 h, n = 9) or 0.9% saline (n = 7). Weanling rats (mean age 23 days) were anesthetized with pentobarbital sodium (50 mg/kg ip) for measurements of mean arterial pressure (MAP), GFR, and renal plasma flow estimated from p-aminohippurate (PAH) clearance (ERPF). Outer cortical RBF (OCBF) was measured by laser-Doppler flowmetry. Baseline MAP was similar in HOE-140- and saline-treated rats (96 +/- 4 vs. 97 +/- 4 mmHg). Also, baseline GFR (0.65 +/- 0.05 vs. 0.52 +/- 0.08 ml.min-1.g-1) and ERPF (1.6 +/- 0.2 vs. 1.3 +/- 0.1 ml.min-1.g-1) were not different in HOE-140- and saline-treated rats, respectively. Intravenous infusion of 200 ng bradykinin did not change MAP or OCBF in HOE-140 rats but decreased MAP (-29 +/- 3%, P < 0.05) and OCBF (-20 +/- 2%, P < 0.05) in controls. Intravenous infusion of 25 ng angiotensin II increased MAP equally in both groups (-32 +/- 4%) and caused a similar reduction in OCBF (-37 +/- 14 vs. -46 +/- 5%). The angiotensin type 1 (AT1) receptor antagonist losartan (10 mg/kg iv) decreased MAP equally in both groups (-22 +/- 2%). However, AT1 blockade increased ERPF to 3.1 +/- 0.8 ml.min-1.g-1 (P < 0.05 vs. baseline) in saline but not in HOE-140 rats (1.9 +/- 0.4 ml.min-1.g-1). Kidney renin mRNA and angiotensin II contents were not different in HOE-140 vs. saline groups. The present findings indicate that bradykinin is not a primary mediator of the maturational rise in RBF or GFR in the rat. However, the data suggest that under control conditions, angiotensin II, acting via AT1 receptors, counteracts the renal vasodilatory effects of endogenous bradykinin in the developing kidney.
本研究旨在评估缓激肽通过B2受体在大鼠肾血流量(RBF)和肾小球滤过率(GFR)发育性升高过程中的作用。新生大鼠从出生起就用激肽B2受体拮抗剂HOE - 140(600微克/千克皮下注射,每12小时一次,n = 9)或0.9%生理盐水(n = 7)进行长期治疗。用戊巴比妥钠(50毫克/千克腹腔注射)麻醉断奶大鼠(平均年龄23天),以测量平均动脉压(MAP)、GFR以及通过对氨基马尿酸(PAH)清除率估算的肾血浆流量(ERPF)。用激光多普勒血流仪测量外皮质肾血流量(OCBF)。HOE - 140处理组和生理盐水处理组大鼠的基线MAP相似(分别为96±4 mmHg和97±4 mmHg)。同样,HOE - 140处理组和生理盐水处理组大鼠的基线GFR(分别为0.65±0.05与0.52±0.08毫升·分钟⁻¹·克⁻¹)和ERPF(分别为1.6±0.2与1.3±0.1毫升·分钟⁻¹·克⁻¹)也无差异。静脉注射200纳克缓激肽对HOE - 140处理组大鼠的MAP或OCBF无影响,但使对照组大鼠的MAP降低(-29±3%,P < 0.05),OCBF降低(-20±2%,P < 0.05)。静脉注射25纳克血管紧张素II使两组大鼠的MAP同等程度升高(-32±4%),并使OCBF出现类似程度的降低(分别为-37±14与-46±5%)。血管紧张素1(AT1)受体拮抗剂氯沙坦(10毫克/千克静脉注射)使两组大鼠的MAP同等程度降低(-22±2%)。然而,阻断AT1使生理盐水处理组大鼠的ERPF升高至3.1±0.8毫升·分钟⁻¹·克⁻¹(与基线相比P < 0.05),而HOE - 140处理组大鼠的ERPF未升高(1.9±0.4毫升·分钟⁻¹·克⁻¹)。HOE - 140组与生理盐水组大鼠肾脏肾素mRNA和血管紧张素II含量无差异。本研究结果表明,缓激肽不是大鼠RBF或GFR成熟性升高的主要介导因子。然而,数据提示在对照条件下,血管紧张素II通过AT1受体发挥作用,抵消了发育中肾脏内源性缓激肽的肾血管舒张作用。