Suppr超能文献

Effect of L-NAME on pressure-flow relationships in isolated rabbit lungs: role of red blood cells.

作者信息

Sprague R S, Stephenson A H, Dimmitt R A, Weintraub N L, Branch C A, McMurdo L, Lonigro A J

机构信息

Department of Medicine, Saint Louis University School of Medicine, Missouri 63104, USA.

出版信息

Am J Physiol. 1995 Dec;269(6 Pt 2):H1941-8. doi: 10.1152/ajpheart.1995.269.6.H1941.

Abstract

Nitric oxide (NO) is produced by and relaxes pulmonary arteries and veins; however, a role for NO as a participant in the control of pulmonary vascular resistance (PVR) remains to be defined. Here we investigated the hypothesis that for NO to serve as a determinant of PVR in the rabbit requires the presence of blood. In isolated blood-perfused rabbit lungs, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) increased PVR and the slope of the pressure-flow relationship. These effects of L-NAME were prevented by pretreatment with L-arginine. In contrast, in lungs perfused with a physiological salt solution, L-NAME had no effect on PVR or the pressure-flow relationship. The addition of washed red blood cells (RBCs) to physiological salt solution, but not the addition of plasma and platelets, restored the response to L-NAME. This effect of RBCs was not reproduced by increasing perfusate viscosity with dextran. These results suggest that, in the rabbit lung, NO is a determinant of PVR in the presence of blood. Moreover, that aspect of blood that permits the generation of NO appears to be related to the RBC and not to perfusate viscosity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验