Suppr超能文献

Identification and characterization of transcriptional regulatory elements of the human aromatase cytochrome P450 gene (CYP19).

作者信息

Toda K, Nomoto S, Shizuta Y

机构信息

Department of Medical Chemistry, Kochi Medical School, Japan.

出版信息

J Steroid Biochem Mol Biol. 1996 Jan;56(1-6 Spec No):151-9. doi: 10.1016/0960-0760(95)00232-4.

Abstract

Aromatase cytochrome P450, a member of the cytochrome P450 gene super family, catalyzes conversion of androgens to estrogens in a form of an enzyme-complex with NADPH-cytochrome P450 reductase. Transcription of the aromatase cytochrome P450 gene (CYP19) is regulated in part by tissue-specific promoters coupled with alternative splicing mechanisms. The transcription in human placenta is governed by a promoter activity of the 5' flanking region of exon I.1, which is mapped more than 40 kb upstream from the translational start codon observed in exon II. Transient expression analyses with chimeric constructs containing the 5' flanking sequences linked to the bacterial chloramphenicol acetyltransferase (CAT) gene in human BeWo choriocarcinoma cells localized a cell-type specific enhancer element between -242 and -166 relative to the major cap site. DNase I footprinting and transient expression analyses of the enhancer element indicate that it consists of two sub-elements and that both sub-elements are necessary for the maximum enhancement of the transcription. In addition to the enhancer element, a cis-acting element important for transcriptional enhancement of the gene in response to 12-O-tetradecanoylphorbol 13-acetate in BeWo cells is localized between -2141 and -2115. A nuclear factor binding to the element is identified as NF-IL6 (also termed as LAP and C/EBP beta). Transient expression analyses using the CAT constructs containing the NF-IL6 binding sites involvement of the factor in transcriptional regulation of CYP19.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验