Suppr超能文献

通过旋转回波双共振核磁共振技术得到的5-烯醇丙酮酸莽草酸-3-磷酸合酶三元复合物的配体几何结构

Ligand geometry of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase from rotational-echo double-resonance NMR.

作者信息

McDowell L M, Klug C A, Beusen D D, Schaefer J

机构信息

Department of Chemistry Washington University, St. Louis, Missouri 63130, USA.

出版信息

Biochemistry. 1996 Apr 30;35(17):5395-403. doi: 10.1021/bi9529059.

Abstract

The 46-kDa enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) to form EPSP. The reaction is inhibited by N-(phosphonomethyl)glycine (Glp), which, in the presence of S3P, binds to EPSP synthase to form a stable ternary complex. As part of a solid-state NMR characterization of this structure, we have used dipolar recovery at the magic angle (DRAMA) and rotational-echo double resonance (REDOR) to determine intra- and interligand internuclear distances. DRAMA was used to determine the single 31P-31P distance, while REDOR was used to determine one 31P-15N distance and five 31P-13C distances. These experimental distances were used as restraints in molecular dynamics simulations of an S3P-Glp complex to examine the geometry of the two ligands relative to one another in the ternary complex. The simulations were compared to unrestrained simulations of the EPSP synthase tetrahedral intermediate and its phosphonate analog. The results suggest that Glp is unlikely to bind in the same fashion as PEP, a conclusion that is consistent with recent studies that have questioned the role of Glp as a transition-state or intermediate analog.

摘要

46千道尔顿的5-烯醇丙酮酸莽草酸-3-磷酸(EPSP)合酶催化莽草酸3-磷酸(S3P)和磷酸烯醇丙酮酸(PEP)缩合形成EPSP。该反应受到N-(膦酰基甲基)甘氨酸(Glp)的抑制,在S3P存在的情况下,Glp与EPSP合酶结合形成稳定的三元复合物。作为对该结构进行固态核磁共振表征的一部分,我们使用了魔角双极恢复(DRAMA)和旋转回波双共振(REDOR)来确定配体内和配体间的核间距。DRAMA用于确定单个31P-31P距离,而REDOR用于确定一个31P-15N距离和五个31P-13C距离。这些实验距离被用作S3P-Glp复合物分子动力学模拟中的约束条件,以研究三元复合物中两个配体相对于彼此的几何结构。将这些模拟与EPSP合酶四面体中间体及其膦酸酯类似物的无约束模拟进行了比较。结果表明,Glp不太可能以与PEP相同的方式结合,这一结论与最近质疑Glp作为过渡态或中间体类似物作用的研究一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验