Suppr超能文献

神经元型一氧化氮合酶的电子顺磁共振光谱表征

EPR spectroscopic characterization of neuronal NO synthase.

作者信息

Galli C, MacArthur R, Abu-Soud H M, Clark P, Steuhr D J, Brudvig G W

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA.

出版信息

Biochemistry. 1996 Feb 27;35(8):2804-10. doi: 10.1021/bi9520444.

Abstract

Neuronal NO synthase (nNOS) consists of a reductase domain that binds FAD, FMN, NADPH, and calmodulin, and an oxygenase domain that binds heme, tetrahydrobiopterin, and the substrate L-arginine. One flavin in resting nNOS exits as an air-stable semiquinone radical. During NO synthesis, electron transfer occurs between the flavins and heme iron. We have characterized the nNOS heme iron and flavin semiquinone radical by electron paramagnetic resonance (EPR) spectroscopy. Under anaerobic conditions, the flavin radical spin relaxation was very slow (8 HZ at 22 K) and was enhanced 13-fold by dissolved dioxygen via spin-spin coupling. The flavin radical, probably the semiquinone FMNH., was shown by progressive microwave power saturation and EPR saturation recovery under anaerobic conditions to be spin-spin coupled with the heme iron located in the nNOS oxygenase domain. Analysis of an nNOS preparation that was devoid of heme but contained the flavin radical revealed that spin-spin coupling increased the rate of flavin radical relaxation by a factor of 15. The presence of bound substrate (L-arginine) or the substate analogue Nomega-nitro-L-arginine methyl ester (NAME) had no effect on the flavin spin relaxation kinetics. The observed g values of the nNOS heme were 7.68, and 1.81 and were unchanged by occupation of the substrate binding site by L-arginine or NAME. The substrate also had no effect on the heme zero-field splitting parameter, D=5.2cm-1. Together, the data indicate that the flavin and heme redox centers are positioned near each other in nNOS, consistent with their participating in an interdomain electron transfer. The flavin radical is affected by dissolved oxygen, suggesting that its binding site within the reductase domain partially exposed to solvent, but is unaffected when substrate binds to the oxygenase domain. Substrate binding also appears to take place outside the first coordination shell of the nNOS heme iron.

摘要

神经元型一氧化氮合酶(nNOS)由一个结合FAD、FMN、NADPH和钙调蛋白的还原酶结构域,以及一个结合血红素、四氢生物蝶呤和底物L-精氨酸的加氧酶结构域组成。静息状态下nNOS中的一个黄素以空气稳定的半醌自由基形式存在。在一氧化氮合成过程中,电子在黄素和血红素铁之间转移。我们通过电子顺磁共振(EPR)光谱对nNOS血红素铁和黄素半醌自由基进行了表征。在厌氧条件下,黄素自由基的自旋弛豫非常缓慢(22K时为8赫兹),通过自旋-自旋耦合,溶解的双氧使其增强了13倍。在厌氧条件下,通过逐步微波功率饱和和EPR饱和恢复表明,黄素自由基(可能是半醌FMNH.)与位于nNOS加氧酶结构域中的血红素铁发生自旋-自旋耦合。对不含血红素但含有黄素自由基的nNOS制剂进行分析表明,自旋-自旋耦合使黄素自由基弛豫速率提高了15倍。结合底物(L-精氨酸)或底物类似物Nω-硝基-L-精氨酸甲酯(NAME)的存在对黄素自旋弛豫动力学没有影响。观察到的nNOS血红素的g值为7.68和1.81,L-精氨酸或NAME占据底物结合位点时其不变。底物对血红素零场分裂参数D = 5.2cm-1也没有影响。总之,数据表明黄素和血红素氧化还原中心在nNOS中彼此靠近,这与其参与结构域间电子转移一致。黄素自由基受溶解氧影响,表明其在还原酶结构域内的结合位点部分暴露于溶剂中,但底物与加氧酶结构域结合时不受影响。底物结合似乎也发生在nNOS血红素铁的第一配位层之外。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验