Lu S C, Sun W M, Yi J, Ookhtens M, Sze G, Kaplowitz N
Department of Medicine, University of Southern California School of Medicine, Los Angeles, 90033, USA.
J Clin Invest. 1996 Mar 15;97(6):1488-96. doi: 10.1172/JCI118571.
Recently our laboratory has cloned both the rat canalicular and sinusoidal GSH transporters (RcGshT and RsGshT, respectively; Yi, J., S. Lu, J. Fernandez-Checa, and N. Kaplowitz. 1994. J. Clin. Invest. 93:1841-1845; and 1995. Proc. Natl. Acad. Sci. USA. 92:1495-1499). The current work characterized GSH transport and the expression of these two GSH transporters in various mammalian cell lines. The average cell GSH levels (nmol/10(6) cells) were 25, 22, 32, 13, and 13 in HepG2, HeLa, CaCo-2, MDCK, and Cos-1 cells, respectively. GSH efflux was temperature dependent and averaged 0.018, 0.018, 0.012, 0.007, and 0.019 nmol/10(6) cells/min from HepG2, HeLa, CaCo-2, MDCK, and Cos-1 cells, respectively. Dithiothreitol (DTT), which stimulates rat sinusoidal GSH efflux, stimulated GSH efflux only in HepG2 and HeLa cells which was partially reversed by subsequent cystine treatment. GSH uptake (1 mM plus 35S-GSH) was temperature dependent, linear up to 45 min, and Na+-independent with average rates of 1.12, 0.91, 0.45, and 0.45 nmol/10(6) cells/30 min for HepG2, HeLa, CaCo-2, MDCK, and Cos-1 cells, respectively. BSP-GSH (2mM), which cis-inhibits sinusoidal GSH uptake in rat liver and HepG2 cells, inhibited GSH uptake only in HeLa cells. mRNA and polypeptide of RcGshT are expressed in all cells whereas those of RsGshT are expressed only in HepG2 and HeLa cells. In conclusion, bidirectional GSH transport, mediated by the "canalicular" GSH transporter, is ubiquitous in mammalian cells. Sinusoidal GSH transporter expression is more restricted, being present in HepG2 and HeLa cells. DTT and BSP-GSH affect GSH transport only in cells expressing the sinusoidal transporter confirming their selective action on this transporter.
最近我们实验室克隆了大鼠胆小管和窦状隙谷胱甘肽转运体(分别为RcGshT和RsGshT;Yi,J.,S. Lu,J. Fernandez-Checa和N. Kaplowitz。1994年。《临床研究杂志》93:1841 - 1845;以及1995年。《美国国家科学院院刊》92:1495 - 1499)。当前的工作对这两种谷胱甘肽转运体在各种哺乳动物细胞系中的谷胱甘肽转运及表达进行了表征。HepG2、HeLa、CaCo - 2、MDCK和Cos - 1细胞中细胞内谷胱甘肽的平均水平(nmol/10⁶细胞)分别为25、22、32、13和13。谷胱甘肽外排依赖于温度,HepG2、HeLa、CaCo - 2、MDCK和Cos - 1细胞中谷胱甘肽外排的平均速率分别为0.018、0.018、0.012、0.007和0.019 nmol/10⁶细胞/分钟。二硫苏糖醇(DTT)可刺激大鼠窦状隙谷胱甘肽外排,仅在HepG2和HeLa细胞中刺激谷胱甘肽外排,随后的胱氨酸处理可部分逆转这种刺激作用。谷胱甘肽摄取(1 mM加³⁵S - 谷胱甘肽)依赖于温度,在长达45分钟内呈线性,且不依赖于钠离子,HepG2、HeLa、CaCo - 2、MDCK和Cos - 1细胞中谷胱甘肽摄取的平均速率分别为1.12、0.91、0.45和0.45 nmol/10⁶细胞/30分钟。BSP - 谷胱甘肽(2 mM)可顺式抑制大鼠肝脏和HepG2细胞中窦状隙谷胱甘肽摄取,仅在HeLa细胞中抑制谷胱甘肽摄取。RcGshT的mRNA和多肽在所有细胞中均有表达,而RsGshT的mRNA和多肽仅在HepG2和HeLa细胞中表达。总之,由“胆小管”谷胱甘肽转运体介导的双向谷胱甘肽转运在哺乳动物细胞中普遍存在。窦状隙谷胱甘肽转运体的表达更具限制性,仅存在于HepG2和HeLa细胞中。DTT和BSP - 谷胱甘肽仅在表达窦状隙转运体的细胞中影响谷胱甘肽转运,证实了它们对该转运体的选择性作用。