Suppr超能文献

UVB radiation interrupts cytokine-mediated support of an epidermal-derived dendritic cell line (XS52) by a dual mechanism.

作者信息

Schuhmachers G, Ariizumi K, Kitajima T, Edelbaum D, Xu S, Shadduck R K, Gilmore G L, Taylor R S, Bergstresser P R, Takashima A

机构信息

Department of Dermatology, University of Texas, Southwestern Medical Center, Dallas 75235-9069, USA.

出版信息

J Invest Dermatol. 1996 May;106(5):1023-9. doi: 10.1111/1523-1747.ep12338592.

Abstract

We have established long-term dendritic cell lines from the epidermis of newborn mice. These cell lines (XS series) proliferate maximally in response to granulocyte/macrophage-colony stimulating factor, as well as to CSF-1, which is produced by skin-derived NS fibroblast lines and by keratinocytes (albeit in smaller amounts). The purpose of this study was to examine the impact of UVB radiation on CSF-1-mediated interaction of dendritic cells with fibroblasts and keratinocytes. Exposure of NS cells to UVB radiation (unfiltered FS20 sunlamp) decreased CSF-1 production at mRNA and protein levels. Both changes occurred in a dose-dependent fashion, with 50 J/m2 causing a significant reduction. UVB radiation also downregulated CSF-1 mRNA expression by Pam 212 keratinocytes. UVB exposure of XS cells diminished the surface expression of CSF-1 receptors, with 50 J/m2 causing a significant reduction. Thus, UVB radiation interrupts CSF-1-mediated cell-cell interaction by a dual mechanism: downregulating CSF-1 production and abrogating CSF-1 receptor expression. Importantly, granulocyte/macrophage-colony stimulating factor receptor expression by XS cells was also inhibited by UVB radiation, once again, with 50 J/m2 producing significant inhibition. We propose that the resulting CSF-1 deficiency in epidermal microenvironment and unresponsiveness by dendritic cells to relevant growth factors may contribute to UVB-mediated loss of resident epidermal dendritic cells (i.e., Langerhans cells) in skin.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验