Kremser K, Stangl H, Pahan K, Singh I
Institut für Medizinische Chemie, Universität Wien, Austria.
Eur J Clin Chem Clin Biochem. 1995 Nov;33(11):763-74. doi: 10.1515/cclm.1995.33.11.763.
We have previously shown that peroxisomes are involved in the production and detoxification of reactive oxygen species and that peroxisomal functions are damaged by such oxygen species. Since nitric oxide is not only a cellular messenger, but also a free radical, it would be interesting to detect a connection between nitric oxide levels and peroxisomal enzyme activities. To determine if nitric oxide has an effect on the activities of peroxisomal functions and whether this effect is based solely on its chemical properties as reactive oxygen species or its action as a second messenger, effectors of the cellular nitric oxide level were applied to a cell model (human skin fibroblasts in culture) or directly to the enzymatic assays or both. If applied to the monolayer at non-cytotoxic concentrations, N-nitro-L-arginine methyl ester hydrochloride, an inhibitor of nitric oxide synthase (EC 1.14.13.39), increased catalase (EC 1.11.1.6) activity by more than 10% and decreased the activity of the peroxisomal fatty acid oxidation system by more than 10%. The effect was concentration-dependent. L-Arginine had the contrary effect. Combinations of L-arginine and N-nitro-L-arginine methyl ester hydrochloride compensated one another. If applied directly to the assays, S-nitroso-N-acetylpenicillamine and sodium nitroprusside inhibited catalase activity in a concentration-dependent manner. Sodium nitro-prusside had no effect on the peroxisomal beta-oxidation system unless cells were pretreated with N-nitro-L-arginine methyl ester overnight (50% inhibition). The results show a differential effect for the application of nitric oxide-effectors on fibroblast monolayers, cell suspensions and under assay conditions. Depending on the conditions of the incubation, nitric oxide applied to the cell monolayer at low doses acts as a second messenger in cells rather than as reactive oxygen species. Under assay conditions the effect of nitric oxide is more likely that of a reactive oxygen species because it inhibits all measured enzyme activities.
我们之前已经表明,过氧化物酶体参与活性氧的产生和解毒,并且过氧化物酶体的功能会受到此类氧物种的损害。由于一氧化氮不仅是一种细胞信使,也是一种自由基,因此检测一氧化氮水平与过氧化物酶体酶活性之间的联系将会很有趣。为了确定一氧化氮是否对过氧化物酶体功能的活性有影响,以及这种影响是否仅基于其作为活性氧的化学性质或其作为第二信使的作用,将细胞内一氧化氮水平的效应物应用于细胞模型(培养的人皮肤成纤维细胞),或直接应用于酶促测定,或两者兼用。如果以非细胞毒性浓度应用于单层细胞,一氧化氮合酶(EC 1.14.13.39)的抑制剂盐酸N-硝基-L-精氨酸甲酯可使过氧化氢酶(EC 1.11.1.6)活性提高超过10%,并使过氧化物酶体脂肪酸氧化系统的活性降低超过10%。这种效应是浓度依赖性的。L-精氨酸则有相反的作用。L-精氨酸和盐酸N-硝基-L-精氨酸甲酯的组合相互抵消。如果直接应用于测定中,S-亚硝基-N-乙酰青霉胺和硝普钠会以浓度依赖性方式抑制过氧化氢酶活性。除非细胞用盐酸N-硝基-L-精氨酸甲酯预处理过夜,否则硝普钠对过氧化物酶体β-氧化系统没有影响(50%抑制)。结果表明,一氧化氮效应物在成纤维细胞单层、细胞悬液以及测定条件下的应用有不同的效果。根据孵育条件,低剂量应用于细胞单层的一氧化氮在细胞中作为第二信使起作用,而不是作为活性氧。在测定条件下,一氧化氮的作用更可能是作为活性氧,因为它会抑制所有测定的酶活性。