Suppr超能文献

Neuron-specific gene expression of synapsin I. Major role of a negative regulatory mechanism.

作者信息

Schoch S, Cibelli G, Thiel G

机构信息

Institute for Genetics, University of Cologne, D-50674 Cologne, Federal Republic of Germany.

出版信息

J Biol Chem. 1996 Feb 9;271(6):3317-23. doi: 10.1074/jbc.271.6.3317.

Abstract

The synapsins are a family of neuron-specific phosphoproteins that selectively bind to small synaptic vesicles in the presynaptic nerve terminal. The human synapsin I gene was functionally analyzed to identify control elements directing the neuron-specific expression of synapsin I. By directly measuring the mRNA transcripts of a reporter gene, we demonstrate that the proximal region of the synapsin I promoter is sufficient for directing neuron-specific gene expression. This proximal region is highly conserved between mouse and human. Deletion of a putative binding site for the zinc finger protein, neuron-restrictive silencer factor/RE-1 silencing transcription factor (NRSF/REST), abolished neuron-specific expression of the reporter gene almost entirely, allowing constitutively acting elements of the promoter to direct expression in a non-tissue-specific manner. These constitutive transcriptional elements are present as a bipartite enhancer, consisting of the region upstream (nucleotides -422 to -235) and downstream (nucleotides -199 to -143) of the putative NRSF/REST-binding site. The latter contains a motif identical to the cAMP response element. Both regions are not active or are only weakly active in promoting transcription on their own and show no tissue-specific preference. From these data we conclude that neuron-specific expression of synapsin I is accomplished by a negative regulatory mechanism via the NRSF/REST binding motif.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验