Suppr超能文献

Analysis and modeling of substrate uptake and product release by prokaryotic and eukaryotic cells.

作者信息

Krämer R

机构信息

Institute of Biotechnology, Research Center Jülich, Germany.

出版信息

Adv Biochem Eng Biotechnol. 1996;54:31-74. doi: 10.1007/BFb0102332.

Abstract

Translocation of molecules and ions across cell membranes is an important step for a complete description of the metabolic network in terms of kinetics, energetics and control. With a few exceptions, most molecules cross the permeability barrier of the membrane with the aid of membrane-embedded carrier proteins. Uptake of nutrients (carbon, energy and nitrogen sources as well as supplements) and excretion of the majority of products are thus carrier-mediated transport processes. Consequently, they are characterized by particular kinetic properties of the respective carrier systems, they depend on energy sources (driving forces) which must be provided by the cell, and they are subject to regulation both on the level of activity and expression. They are thus fully integrated into the functional and regulatory networks of the cell. Structural (primary structure, conformation and topology) and functional properties (kinetics, energetics and regulation) of the different classes of carrier systems from both prokaryotic and eukaryotic membranes are summarized. The methodical requirements for a quantitative measurement of their function and possible pitfalls in transport studies are described, both for determination using isolated cells and for analysis in a bioreactor. The significance of transport reactions for biotechnological processes in general and for metabolic design in particular is discussed, with respect to nutrient uptake, product excretion and the occurrence of energy wasting combinations of transport reactions (futile cycles). Some examples are given where transport reactions have been incorporated into modeling approaches with respect to metabolic control, to flux analysis, to kinetic properties and to energetic demands.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验