Romanov V, Hausinger R P
Center for Microbial Ecology, Michigan State University, East Lansing 48824, USA.
J Bacteriol. 1996 May;178(9):2656-61. doi: 10.1128/jb.178.9.2656-2661.1996.
Corynebacterium sepedonicum KZ-4, described earlier as a strain capable of growth on 2,4-dichlorobenzoate (G.M. Zaitsev and Y.N. Karasevich, Mikrobiologiya 54:356-369, 1985), is known to metabolize this substrate via 4-hydroxybenzoate and protocatechuate, and evidence consistent with an initial reductive dechlorination step to form 4-chlorobenzoate was found in another coryneform bacterium, strain NTB-1 (W.J.J. van den Tweel, J.B. Kok, and J.A.M. de Bont, Appl. Environ. Microbiol. 53:810-815, 1987). 2-Chloro-4-fluorobenzoate was found to be converted stoichiometrically to 4-fluorobenzoate by resting cells of strain KZ-4, compatible with a reductive process. Experiments with cell extracts demonstrated that Mg - ATP and coenzyme A (CoA) were required to stimulate reductive dehalogenation, consistent with the intermediacy of 2-chloro-4-fluoro-benzoyl-CoA and 2,4-dichlorobenzoyl-CoA thioesters. 2,4-Dichlorobenzoyl-CoA was shown to be converted to 4-chlorobenzoyl-CoA in a novel NADPH-dependent reaction in extracts of both KZ-4 and NTB-1. In addition to the ligase and reductive dehalogenase activities, hydrolytic 4-chlorobenzoyl-CoA dehalogenase and thioesterase activities, 4-hydroxybenzoate 3-monooxygenase, and protocatechuate 3,4-dioxygenase activities were demonstrated to be present in the soluble fraction of KZ-4 extracts following ultracentrifugation. We propose that the pathway for 2,4-dichlorobenzoate catabolism in strains KZ-4 and NTB-1 involves formation of 2,4-dichlorobenzoyl-CoA, NADPH-dependent ortho dehalogenation yielding 4-chlorobenzoyl-CoA, hydrolytic removal of chlorine from the para position to generate 4-hydroxybenzoyl-CoA, hydrolysis to form 4-hydroxybenzoate, oxidation to yield protocatechuate, and oxidative ring cleavage.
先前被描述为能够在2,4 - 二氯苯甲酸上生长的菌株科里内杆菌KZ - 4(G.M.扎伊采夫和Y.N.卡拉谢维奇,《微生物学》54:356 - 369,1985),已知其通过4 - 羟基苯甲酸和原儿茶酸代谢该底物,并且在另一株棒状杆菌NTB - 1中发现了与初始还原脱氯步骤形成4 - 氯苯甲酸一致的证据(W.J.J.范登特韦尔、J.B.科克和J.A.M.德邦特,《应用与环境微生物学》53:810 - 815,1987)。发现2 - 氯 - 4 - 氟苯甲酸被KZ - 4菌株的静息细胞化学计量地转化为4 - 氟苯甲酸,这与还原过程相符。细胞提取物实验表明,Mg - ATP和辅酶A(CoA)是刺激还原脱卤所必需的,这与2 - 氯 - 4 - 氟苯甲酰 - CoA和2,4 - 二氯苯甲酰 - CoA硫酯的中间作用一致。在KZ - 4和NTB - 1的提取物中,2,4 - 二氯苯甲酰 - CoA在一种新的依赖NADPH的反应中被证明可转化为4 - 氯苯甲酰 - CoA。除了连接酶和还原脱卤酶活性、水解性4 - 氯苯甲酰 - CoA脱卤酶和硫酯酶活性外,在KZ - 4提取物经超速离心后的可溶部分中还证明存在4 - 羟基苯甲酸3 - 单加氧酶和原儿茶酸3,4 - 双加氧酶活性。我们提出,KZ - 4和NTB - 1菌株中2,4 - 二氯苯甲酸分解代谢途径包括形成2,4 - 二氯苯甲酰 - CoA,依赖NADPH的邻位脱卤生成4 - 氯苯甲酰 - CoA,从对位水解去除氯生成4 - 羟基苯甲酰 - CoA,水解形成4 - 羟基苯甲酸,氧化生成原儿茶酸,以及氧化开环。