Suppr超能文献

Neutralization sensitivity and accessibility of continuous B cell epitopes of the feline immunodeficiency virus envelope.

作者信息

Richardson J, Fossati I, Moraillon A, Castelot S, Sonigo P, Pancino G

机构信息

Génétique des Virus (ICGM-CNRS UPR 0415), Institut Cochin de Génétique Molëculaire, Paris, France.

出版信息

J Gen Virol. 1996 Apr;77 ( Pt 4):759-71. doi: 10.1099/0022-1317-77-4-759.

Abstract

Antibodies elicited during natural infection of domestic cats by the feline immunodeficiency virus (FIV) recognize continuous epitopes in nine domains of the virus envelope glycoproteins. Whereas antibodies directed against the V3 envelope region can neutralize laboratory-adapted virus, neutralization of FIV has been shown to depend upon cellular substrate, and virus adaptation to laboratory cell lines may alter sensitivity to neutralizing antibodies. We therefore undertook a systematic analysis of the continuous B cell epitopes of the envelope of a primary FIV isolate, Wo. The capacity of feline antisera elicited against nine envelope domains to neutralize primary and laboratory-adapted virus was evaluated in feline peripheral blood mononuclear cells (PBMC). The laboratory-adapted strain Petaluma was used to compare neutralization in PBMC and Crandell feline kidney cells (CrFK). Antibodies specific for the V3 region neutralized both primary and laboratory-adapted virus whether residual infectivity was measured in CrFK or in feline PBMC. However, a large discrepancy in the efficiency of neutralization was observed in these ex vivo models of infection, perhaps reflecting diversity in the interaction between virus and different cellular targets. We also examined the accessibility of epitopes on the functional oligomeric envelope complex of FIV. Most of the epitopes were poorly exposed on native envelope glycoproteins at the surface of live infected cells. The most accessible domain was the only domain sensitive to neutralizing antibodies. These results suggest that inaccessibility on oligomeric envelope glycoproteins may frequently underlie the insensitivity of diverse lentivirus B cell epitopes to neutralization.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验