Tiemeyer M, Goodman C S
Howard Hughes Medical Institute, University of California at Berkeley 94720, USA.
Development. 1996 Mar;122(3):925-36. doi: 10.1242/dev.122.3.925.
Interactions between embryonic neural cells generate the specific patterns of connectivity observed in nervous systems. Cell surface carbohydrates have been proposed to function in cellular recognition events guiding such interactions. Carbohydrate-binding proteins (lectins) that recognize specific oligosaccharide ligands in embryonic neural tissue provide a molecular mechanism for carbohydrate-mediated cell-cell interactions in neural development. Therefore, we have screened an embryonic Drosophila melanogaster cDNA library, expressed in COS1 cells, for carbohydrate-binding activity. COS1 cells expressing putative Drosophila lectins were identified and recovered based on their adhesion to immobilized preparations of neutral and zwitterionic glycolipids extracted from Drosophila embryos. We have identified an endogenous lectin expressed during Drosophila embryogenesis. The cloned lectin, designated 'gliolectin', possesses a novel protein sequence with a calculated molecular mass of 24,993. When expressed in Drosophila S2 cells, the lectin mediates heterophilic cellular aggregation. In embryos, gliolectin is expressed by a subset of glial cells found at the midline of the developing nervous system. Expression is highest during the formation of the Drosophila embryonic axonal commissures, a process requiring midline glial cell funcion. Immunoprecipitation with a monoclonal antibody against gliolectin yields a protein of Mr=46,600 from Drosophila embryonic membranes, suggesting that post-translational modification of gliolectin is extensive. Epitope- tagged chimericproteins composed of the amino terminal one-half of gliolectin and the Fc region of human IgG bind a small subset of the total glycolipids extracted from Drosophila embryos, demonstrating that the lectin activity of gliolectin can discriminate between oligosaccharide structures. The presence of gliolectin in the developing Drosophila embryonic nervous system further supports a role for cell surface carbohydrates in cell-cell recognition and indicates that the molecular diversity of animal lectins is not yet completely defined.
胚胎神经细胞之间的相互作用产生了在神经系统中观察到的特定连接模式。有人提出细胞表面碳水化合物在引导此类相互作用的细胞识别事件中发挥作用。识别胚胎神经组织中特定寡糖配体的碳水化合物结合蛋白(凝集素)为神经发育中碳水化合物介导的细胞间相互作用提供了一种分子机制。因此,我们筛选了一个在COS1细胞中表达的果蝇胚胎cDNA文库,以寻找碳水化合物结合活性。基于表达假定果蝇凝集素的COS1细胞对从果蝇胚胎中提取的中性和两性离子糖脂固定制剂的粘附性,对其进行了鉴定和回收。我们鉴定出一种在果蝇胚胎发生过程中表达的内源性凝集素。克隆的凝集素命名为“神经胶质凝集素”,具有一个新的蛋白质序列,计算分子量为24,993。当在果蝇S2细胞中表达时,该凝集素介导异嗜性细胞聚集。在胚胎中,神经胶质凝集素由发育中的神经系统中线处的一部分神经胶质细胞表达。在果蝇胚胎轴突连合形成过程中表达最高,这一过程需要中线神经胶质细胞发挥功能。用抗神经胶质凝集素的单克隆抗体进行免疫沉淀,从果蝇胚胎膜中得到一个分子量为46,600的蛋白质,这表明神经胶质凝集素的翻译后修饰广泛。由神经胶质凝集素氨基末端一半和人IgG的Fc区域组成的表位标记嵌合蛋白与从果蝇胚胎中提取的总糖脂的一小部分结合,表明神经胶质凝集素的凝集素活性可以区分寡糖结构。神经胶质凝集素在发育中的果蝇胚胎神经系统中的存在进一步支持了细胞表面碳水化合物在细胞间识别中的作用,并表明动物凝集素的分子多样性尚未完全明确。