Suppr超能文献

巨噬细胞N(O)合酶的结构域在活性二聚体酶的形成和稳定过程中具有不同作用。

Domains of macrophage N(O) synthase have divergent roles in forming and stabilizing the active dimeric enzyme.

作者信息

Ghosh D K, Abu-Soud H M, Stuehr D J

机构信息

Department of Immunology, Cleveland Clinic Research Institute, Ohio 44195, USA.

出版信息

Biochemistry. 1996 Feb 6;35(5):1444-9. doi: 10.1021/bi9521295.

Abstract

The cytokine-inducible NO synthase (iNOS) is a flavin-containing hemeprotein that must dimerize to generate NO. Trypsin cleaves the dimeric enzyme into an oxygenase domain fragment that remains dimeric, contains heme and H4biopterin, and binds L-arginine and a reductase domain fragment that is monomeric, binds NADPH, FAD, FMN, and catalyzes the reduction of cytochrome c [Ghosh, D. K. & Stuehr, D. J. (1995) Biochemistry 34, 801-807]. The current study investigates the isolated oxygenase and reductase domains of iNOS to understand how they form and stabilize the active dimeric enzyme. The dimeric oxygenase domain dissociated into folded, heme-containing monomers when incubated with 2-5 M urea, whereas the reductase domain unfolded under these conditions and lost its ability to catalyze NADPH-dependent cytochrome c reduction. Spectral analysis of the dissociation reaction showed that it caused structural changes within the oxygenase domain and exposed the distal side of the heme to solvent, enabling it to bind dithiothreitol as a sixth ligand. Importantly, the oxygenase domain monomers could reassociate into a dimeric form even in the absence of the reductase domain. The reaction required L-arginine and H4biopterin and completely reversed the structural changes in heme pocket and protein structure that occurred upon dissociating the original dimer. Together, this confirms that the oxygenase domain contains all of the determinants needed for subunit dimerization and indicates that the dimeric structure greatly affects the heme and protein environment in the oxygenase domain.

摘要

细胞因子诱导型一氧化氮合酶(iNOS)是一种含黄素的血红素蛋白,必须二聚化才能产生一氧化氮。胰蛋白酶将二聚体酶切割成一个仍为二聚体的加氧酶结构域片段,该片段含有血红素和四氢生物蝶呤,并结合L-精氨酸;以及一个单体的还原酶结构域片段,该片段结合NADPH、FAD、FMN,并催化细胞色素c的还原[戈什,D.K.和斯图尔,D.J.(1995年)《生物化学》34卷,801 - 807页]。当前的研究调查了iNOS分离的加氧酶和还原酶结构域,以了解它们如何形成并稳定活性二聚体酶。当与2 - 5 M尿素一起孵育时,二聚体加氧酶结构域解离成折叠的、含血红素的单体,而还原酶结构域在这些条件下展开并失去其催化NADPH依赖性细胞色素c还原的能力。解离反应的光谱分析表明,它导致了加氧酶结构域内的结构变化,并使血红素的远端暴露于溶剂中,使其能够结合二硫苏糖醇作为第六个配体。重要的是,即使在没有还原酶结构域的情况下,加氧酶结构域单体也能重新缔合成二聚体形式。该反应需要L-精氨酸和四氢生物蝶呤,并完全逆转了原始二聚体解离时血红素口袋和蛋白质结构中发生的结构变化。总之,这证实了加氧酶结构域包含亚基二聚化所需的所有决定因素,并表明二聚体结构极大地影响了加氧酶结构域中的血红素和蛋白质环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验