Suppr超能文献

定量风险评估与线性化多阶段模型的局限性

Quantitative risk assessment and the limitations of the linearized multistage model.

作者信息

Lovell D P, Thomas G

机构信息

BIBRA International, Carshalton, Surrey, UK.

出版信息

Hum Exp Toxicol. 1996 Feb;15(2):87-104. doi: 10.1177/096032719601500201.

Abstract
  1. Quantifying carcinogenic risk is an important objective for assisting in the assessment and management of risks from chemical exposure. The most widely used of the many mathematical models proposed for extrapolation of carcinogenicity data from animal studies to low dose human exposures is the linearized multistage (LMS) model. This has, in effect, become the default approach for much of Quantitative Risk Assessment (QRA). The practical properties of this model have been investigated. 2. Analysis of stimulated data using the LMS model showed (i) that the Maximum Likelihood Estimate (MLE) of the low dose slope, q1, was unstable and extremely sensitive to small changes in the data; (ii) the 95% Upper Confidence Limit (UCL) estimate, q1*, preferred by the US Environmental Protection Agency (EPA) was insensitive with only small changes in values being obtained for large changes in the data; (iii) data sets where there was no statistical significance could give risk estimates similar to those obtained from data sets with clear dose-related effects; (iv) the size of the values of the Virtually Safe Dose (VSD) obtained did not necessarily relate to the biological interpretation of the data sets; (v) the value of q1* obtained was closely related to the top dose used in the study. 3. Limitations of the LMS model were illustrated by examples of its use in assessing the carcinogenicity of 2, 3, 7, 8-TCDD leading to the conclusion that the existing models are not suitable for routine use in the estimation of the risk from chemical carcinogens. The use of the LMS model has been justified in part by its original derivation from a mathematical model based upon a multistage model of carcinogenesis. However, estimates of the parameters of the model used to provide estimates of low dose risk to humans have no direct relationship to specific biological event in carcinogenesis. Further developments in mathematical models and increased understanding of the biological events underlying the carcinogenesis will lead to more biologically plausible QRA methods which would then justify serious consideration of QRA by regulatory authorities throughout the world.
摘要
  1. 量化致癌风险是协助评估和管理化学物质暴露风险的一项重要目标。在众多为将动物研究中的致癌性数据外推至低剂量人类暴露而提出的数学模型中,使用最广泛的是线性化多阶段(LMS)模型。实际上,这已成为许多定量风险评估(QRA)的默认方法。该模型的实际特性已得到研究。2. 使用LMS模型对模拟数据进行分析表明:(i)低剂量斜率q1的最大似然估计(MLE)不稳定,且对数据中的微小变化极为敏感;(ii)美国环境保护局(EPA)所青睐的95%上置信限(UCL)估计值q1不敏感,对于数据中的大幅变化,其值仅有微小改变;(iii)无统计学显著性的数据集可能得出与具有明确剂量相关效应的数据集相似的风险估计值;(iv)所获得的实际安全剂量(VSD)值的大小不一定与数据集的生物学解释相关;(v)所获得的q1值与研究中使用的最高剂量密切相关。3. 通过LMS模型用于评估2,3,7,8 - 四氯二苯并二恶英致癌性的示例,说明了该模型的局限性,从而得出结论:现有模型不适用于常规评估化学致癌物风险。LMS模型的使用部分是基于其最初源自一个基于致癌多阶段模型的数学模型。然而,用于为人类低剂量风险提供估计值的模型参数估计与致癌过程中的特定生物学事件并无直接关联。数学模型的进一步发展以及对致癌过程潜在生物学事件的更深入理解,将产生更具生物学合理性的QRA方法,届时全世界监管机构将有理由认真考虑QRA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验