Suppr超能文献

Minimum structural requirement for an inhalational anesthetic binding site on a protein target.

作者信息

Johansson J S, Eckenhoff R G

机构信息

Department of Anesthesiology, University of Pennsylvania Medical Center, Philadelphia, 19104-4283, USA.

出版信息

Biochim Biophys Acta. 1996 May 21;1290(1):63-8. doi: 10.1016/0304-4165(95)00187-5.

Abstract

The present study makes use of direct photoaffinity labeling and fluorescence and circular dichroism spectroscopy to examine the interaction of the inhalational anesthetic halothane with the uncharged alpha-helical form of poly(L-lysine) over a range of chain lengths. Halothane bound specifically to long chain homopolymers (190 to 1060 residues), reaching a stable stoichiometry of 1 halothane to 160 lysine residues in polymers longer than 300 residues. Halothane bound only non-specifically to an alpha-helical 30 residue polymer and to all of the polymers in their charged, random coil form. The data suggest that halothane binding is a function of supersecondary structure whereby intramolecular helix-helix clusters form in the longer polymers, resulting in the creation of confined hydrophobic domains. Circular dichroism spectroscopy cannot demonstrate changes in poly(L-lysine) secondary structure at any chain length with up to 12 mM halothane, suggesting that extensive hydrogen bond disruption by the anesthetic does not occur.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验