Suppr超能文献

植物中小热激蛋白的分子进化

The molecular evolution of the small heat-shock proteins in plants.

作者信息

Waters E R

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson 85721, USA.

出版信息

Genetics. 1995 Oct;141(2):785-95. doi: 10.1093/genetics/141.2.785.

Abstract

The small heat-shock proteins have undergone a tremendous diversification in plants; whereas only a single small heat-shock protein is found in fungi and many animals, over 20 different small heat-shock proteins are found in higher plants. The small heat-shock proteins in plants have diversified in both sequence and cellular localization and are encoded by at least five gene families. In the study, 44 small heat-shock protein DNA and amino acid sequences were examined, using both phylogenetic analysis and analysis of nucleotide substitution patterns to elucidate the evolutionary history of the small heat-shock proteins. The phylogenetic relationships of the small heat-shock proteins, estimated using parsimony and distance methods, reveal the gene duplication, sequence divergence and gene conversion have all played a role in the evolution of the small heat-shock proteins. Analysis of nonsynonymous substitutions and conservative and radical replacement substitutions )in relation to hydrophobicity) indicates that the small heat-shock protein gene families are evolving at different rates. This suggests that the small heat-shock proteins may have diversified in function as well as in sequence and cellular localization.

摘要

小热激蛋白在植物中经历了巨大的多样化;在真菌和许多动物中仅发现一种小热激蛋白,而在高等植物中发现了20多种不同的小热激蛋白。植物中的小热激蛋白在序列和细胞定位上都发生了多样化,并且由至少五个基因家族编码。在这项研究中,对44个小热激蛋白的DNA和氨基酸序列进行了检测,运用系统发育分析和核苷酸替代模式分析来阐明小热激蛋白的进化史。使用简约法和距离法估计的小热激蛋白的系统发育关系表明,基因复制、序列分歧和基因转换都在小热激蛋白的进化中发挥了作用。对非同义替代以及保守和激进替代(与疏水性相关)的分析表明,小热激蛋白基因家族以不同的速率进化。这表明小热激蛋白可能在功能以及序列和细胞定位上都发生了多样化。

相似文献

1
The molecular evolution of the small heat-shock proteins in plants.
Genetics. 1995 Oct;141(2):785-95. doi: 10.1093/genetics/141.2.785.
3
The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses.
Mol Biol Evol. 1999 Jan;16(1):127-39. doi: 10.1093/oxfordjournals.molbev.a026033.
4
Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
J Genet Genomics. 2008 Feb;35(2):105-18. doi: 10.1016/S1673-8527(08)60016-8.
5
Evolution of the alpha-crystallin/small heat-shock protein family.
Mol Biol Evol. 1993 Jan;10(1):103-26. doi: 10.1093/oxfordjournals.molbev.a039992.
6
The plant heat stress transcription factor (Hsf) family: structure, function and evolution.
Biochim Biophys Acta. 2012 Feb;1819(2):104-19. doi: 10.1016/j.bbagrm.2011.10.002. Epub 2011 Oct 17.
7
An Arabidopsis thaliana cDNA clone encoding a 17.6 kDa class II heat shock protein.
Plant Mol Biol. 1992 Mar;18(5):1007-8. doi: 10.1007/BF00019220.
8
Phylogeny of the alpha-crystallin-related heat-shock proteins.
J Mol Evol. 1992 Dec;35(6):537-45. doi: 10.1007/BF00160214.

引用本文的文献

2
Genetic Constraints, Transcriptome Plasticity, and the Evolutionary Response to Climate Change.
Front Genet. 2020 Sep 18;11:538226. doi: 10.3389/fgene.2020.538226. eCollection 2020.
4
Regulatory motifs found in the small heat shock protein (sHSP) gene family in tomato.
BMC Genomics. 2018 Dec 11;19(Suppl 8):860. doi: 10.1186/s12864-018-5190-z.
5
Molecular cloning, bioinformatics analysis, and expression of small heat shock protein beta-1 from Camelus dromedarius, Arabian camel.
PLoS One. 2017 Dec 29;12(12):e0189905. doi: 10.1371/journal.pone.0189905. eCollection 2017.
7
Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.
PLoS One. 2015 Jun 22;10(6):e0129734. doi: 10.1371/journal.pone.0129734. eCollection 2015.
8
A comparative proteomic analysis of Pinellia ternata leaves exposed to heat stress.
Int J Mol Sci. 2013 Oct 15;14(10):20614-34. doi: 10.3390/ijms141020614.
10
Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants.
Plant Cell Rep. 2012 Oct;31(10):1943-57. doi: 10.1007/s00299-012-1307-z. Epub 2012 Jul 14.

本文引用的文献

1
Structure and Light-Induced Expression of a Small Heat-Shock Protein Gene of Pharbitis nil.
Plant Physiol. 1992 Dec;100(4):1772-9. doi: 10.1104/pp.100.4.1772.
2
A Low Molecular Mass Heat-Shock Protein Is Localized to Higher Plant Mitochondria.
Plant Physiol. 1994 Aug;105(4):1255-1261. doi: 10.1104/pp.105.4.1255.
4
5
Evolution of the alpha-crystallin/small heat-shock protein family.
Mol Biol Evol. 1993 Jan;10(1):103-26. doi: 10.1093/oxfordjournals.molbev.a039992.
6
Unbiased estimation of the rates of synonymous and nonsynonymous substitution.
J Mol Evol. 1993 Jan;36(1):96-9. doi: 10.1007/BF02407308.
7
Heat-shock proteins as molecular chaperones.
Eur J Biochem. 1994 Jan 15;219(1-2):11-23. doi: 10.1007/978-3-642-79502-2_2.
8
Molecular evolution of the HSP70 multigene family.
J Mol Evol. 1994 Jan;38(1):1-17. doi: 10.1007/BF00175490.
9
Small heat shock proteins are molecular chaperones.
J Biol Chem. 1993 Jan 25;268(3):1517-20.
10
Mitochondrial Hsp70/MIM44 complex facilitates protein import.
Nature. 1994 Oct 27;371(6500):768-74. doi: 10.1038/371768a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验