Hogan E M, Cohen M A, Boron W F
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
J Gen Physiol. 1995 Nov;106(5):845-62. doi: 10.1085/jgp.106.5.845.
We used microelectrodes to determine whether the K/HCO3 cotransporter tentatively identified in the accompanying paper (Hogan, E. M., M. A. Cohen, and W. F. Boron. 1995. Journal of General Physiology. 106:821-844) can mediate an increase in the intracellular pH (pHi) of squid giant axons. An 80-min period of internal dialysis increased pHi to 7.7, 8.0, or 8.3; the dialysis fluid was free of K+, Na+, and Cl-. Our standard artificial seawater (ASW), which also lacked Na+, K+, and Cl-, had a pH of 8.0. Halting dialysis unmasked a slow pHi decrease. Subsequently introducing an ASW containing 437 mM K+ and 0.5% CO2/12 mM HCO3- had two effects: (a) it caused membrane potential (Vm) to become very positive, and (b) it caused a rapid pHi decrease, because of CO2 influx, followed by a slower plateau-phase pHi increase, presumably because of inward cotransport of K+ and HCO3- ("base influx"). Only extracellular Rb+ substituted for K+ in producing the plateau-phase pHi increase in the presence of CO2/HCO3-. Mean fluxes with Na+, Li+, and Cs+ were not significantly different from zero, even though Vm shifts were comparable for all monovalent cations tested. Thus, unless K+ or Rb+ (but not Na+, Li+, or Cs+) somehow activates a conductive pathway for H+, HCO3-, or both, it is unlikely that passive transport of H+, HCO3-, or both makes the major contribution to the pHi increase in the presence of K+ (or Rb+) and CO2/HCO3-. Because exposing axons to an ASW containing 437 mM K+, but no CO2/HCO3-, produced at most a slow pHi increase, K-H exchange could not make a major contribution to base influx. Introducing an ASW containing CO2/HCO3-, but no K+ also failed to elicit base influx. Because we observed base influx when the ASW and DF were free of Na+ and Cl-, and because the disulfonic stilbene derivatives SITS and DIDS failed to block base influx, Na(+)-dependent Cl-HCO3 exchange also cannot account for the results. Rather, we suggest that the most straightforward explanation for the pHi increase we observed in the simultaneous presence of K+ and CO2/HCO3- is the coupled uptake of K+ and HCO3-.
我们使用微电极来确定在随附论文(霍根,E.M.,M.A.科恩和W.F.博龙。1995年。《普通生理学杂志》。106:821 - 844)中初步鉴定的钾/碳酸氢根共转运体是否能介导枪乌贼巨大轴突细胞内pH值(pHi)的升高。80分钟的内部透析使pHi升高至7.7、8.0或8.3;透析液中不含钾离子、钠离子和氯离子。我们的标准人工海水(ASW),同样不含钠离子、钾离子和氯离子,pH值为8.0。停止透析后,pHi出现缓慢下降。随后引入含有437 mM钾离子和0.5%二氧化碳/12 mM碳酸氢根的ASW产生了两种效应:(a)它使膜电位(Vm)变得非常正,(b)它导致pHi迅速下降,这是由于二氧化碳内流,随后是较慢的平台期pHi升高,推测是由于钾离子和碳酸氢根的同向转运(“碱内流”)。只有细胞外铷离子在有二氧化碳/碳酸氢根存在时能替代钾离子产生平台期pHi升高。钠离子、锂离子和铯离子的平均通量与零无显著差异,尽管所有测试的单价阳离子引起的Vm变化相当。因此,除非钾离子或铷离子(而非钠离子、锂离子或铯离子)以某种方式激活氢离子、碳酸氢根或两者的传导途径,否则在有钾离子(或铷离子)和二氧化碳/碳酸氢根存在时,氢离子、碳酸氢根或两者的被动转运不太可能是pHi升高的主要原因。因为将轴突暴露于含有437 mM钾离子但无二氧化碳/碳酸氢根的ASW中最多只会导致pHi缓慢升高,钾 - 氢交换不可能是碱内流的主要原因。引入含有二氧化碳/碳酸氢根但无钾离子的ASW也未能引发碱内流。因为当ASW和透析液不含钠离子和氯离子时我们观察到了碱内流,并且因为二磺基芪衍生物SITS和DIDS未能阻断碱内流,钠离子依赖性氯 - 碳酸氢根交换也不能解释这些结果。相反,我们认为对于在同时存在钾离子和二氧化碳/碳酸氢根时观察到的pHi升高,最直接的解释是钾离子和碳酸氢根的协同摄取。