Sobel E, Lange K
Department of Genetics, Stanford University, USA.
Am J Hum Genet. 1996 Jun;58(6):1323-37.
The introduction of stochastic methods in pedigree analysis has enabled geneticists to tackle computations intractable by standard deterministic methods. Until now these stochastic techniques have worked by running a Markov chain on the set of genetic descent states of a pedigree. Each descent state specifies the paths of gene flow in the pedigree and the founder alleles dropped down each path. The current paper follows up on a suggestion by Elizabeth Thompson that genetic descent graphs offer a more appropriate space for executing a Markov chain. A descent graph specifies the paths of gene flow but not the particular founder alleles traveling down the paths. This paper explores algorithms for implementing Thompson's suggestion for codominant markers in the context of automatic haplotyping, estimating location scores, and computing gene-clustering statistics for robust linkage analysis. Realistic numerical examples demonstrate the feasibility of the algorithms.
在系谱分析中引入随机方法,使遗传学家能够处理标准确定性方法难以解决的计算问题。到目前为止,这些随机技术是通过在系谱的基因谱系状态集上运行马尔可夫链来实现的。每个谱系状态指定了系谱中基因流动的路径以及沿每条路径传递的奠基者等位基因。本文延续了伊丽莎白·汤普森的建议,即基因谱系图为执行马尔可夫链提供了更合适的空间。谱系图指定了基因流动的路径,但不指定沿这些路径传递的特定奠基者等位基因。本文探索了在自动单倍型分型、估计位置得分以及计算用于稳健连锁分析的基因聚类统计的背景下,实现汤普森关于共显性标记建议的算法。实际数值示例证明了这些算法的可行性。