Suppr超能文献

大肠杆菌主要复制解旋酶DnaB蛋白与单链DNA的结合。蛋白质六聚体内的长程变构构象变化。

Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer.

作者信息

Jezewska M J, Kim U S, Bujalowski W

机构信息

Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch at Galveston 77555-1053, USA.

出版信息

Biochemistry. 1996 Feb 20;35(7):2129-45. doi: 10.1021/bi952345d.

Abstract

Quantitative analyses of the interactions of the Escherichia coli primary replicative helicase DnaB protein with single-stranded DNA have been performed using the thermodynamically rigorous fluorescence titration technique. This approach allowed us to obtain absolute stoichiometries of the formed complexes and interaction parameters, without any assumptions about the relationship between the observed signal change and the degree of binding. The analysis of the DnaB helicase interactions with nonfluorescent, unmodified nucleic acids has been performed, using a novel spectroscopic Macromolecular Competition Titration (MCT) method developed in the accompanying paper [Jezewska, M. J., & Bujalowski, W. (1996) Biochemistry 35, 2117-2128]. In the presence of the ATP nonhydrolyzable analog AMP-PNP, the DnaB helicase binds polymer DNA with a site-size of 20 +/- 3 nucleotides per protein hexamer. This site-size is independent of the type of nucleic acid base as well as the salt concentration and type of salt. Direct thermodynamic studies of the polynucleotide and oligomer binding to the DnaB hexamer, as well as the competition studies, show that independently of the type of nucleic acid base, as well as salt concentration and type of salt in solution, the helicase has only a single, strong binding site for DNA. Only this site is used when the protein interacts with polymer DNA. Moreover, UV photo-cross-linking experiments with oligonucleotides of different lengths, dT(pT)19, dT(pT)55, and dT(pT)69, suggest that primarily a single subunit of the DnaB helicase hexamer is in contact with the DNA. In interactions with polymer nucleic acids, the DnaB protein shows preferential intrinsic affinity for poly(dA), characterized in our standard conditions (pH 8.1, 10 degrees C, 100 mM NaCl, 5 mM MgCl2) by the intrinsic binding constant K = 6 +/- 2 x 10(6) M-1. These affinities are comparable to the affinities of the single-strand binding proteins in the corresponding solution conditions and strongly suggest that the helicase is capable of binding DNA without additional facilitating factors. Both the intrinsic affinity and the cooperativity are salt dependent. The formation of the DnaB-DNA complex is accompanied by the net release of approximately 2 ions, while another net release of approximately 2 ions accompanies the cooperative interactions. The data indicate an anion effect on the studied interactions and suggests that the released ions most probably originate from both the protein and the nucleic acid. The presence of a single, strong binding site on the hexamer, built of six chemically identical subunits, the very low site-size of the large helicase-DNA complex, and the involvement of a single subunit in contact with the nucleic acid indicate the presence of long-range allosteric interactions in the DnaB helicase which encompass the entire DnaB hexamer. Our sedimentation velocity measurements of the DnaB protein-(AMP-PNP)-5'-fluorescein-(dT)20 ternary complex show that the sedimentation coefficient of the complex is S20,W = 12.3 +/- 0.3, compared with S20,W = 10.5 +/- 0.3 of the free enzyme, indicating large changes in the hydrodynamic properties of the enzyme in the complex. These results provide direct evidence that the DnaB hexamer undergoes dramatic conformational changes which include all six subunits of the enzyme in the ternary complex. Moreover, sedimentation velocity studies of the ternary complex provide direct evidence that the hexamer is the species which binds ss nucleic acid. The significance of these results for a mechanistic model of the functioning of the DnaB helicase in DNA replication is discussed.

摘要

利用热力学严谨的荧光滴定技术,对大肠杆菌主要复制解旋酶DnaB蛋白与单链DNA的相互作用进行了定量分析。这种方法使我们能够获得所形成复合物的绝对化学计量和相互作用参数,而无需对观察到的信号变化与结合程度之间的关系做任何假设。使用随附论文[Jezewska, M. J., & Bujalowski, W. (1996) Biochemistry 35, 2117 - 2128]中开发的一种新型光谱大分子竞争滴定(MCT)方法,对DnaB解旋酶与非荧光、未修饰核酸的相互作用进行了分析。在存在ATP不可水解类似物AMP - PNP的情况下,DnaB解旋酶以每个蛋白六聚体20±3个核苷酸的位点大小结合聚合物DNA。这个位点大小与核酸碱基类型以及盐浓度和盐的类型无关。对多核苷酸和寡聚物与DnaB六聚体结合的直接热力学研究以及竞争研究表明,无论核酸碱基类型、溶液中的盐浓度和盐的类型如何,解旋酶对DNA只有一个单一的强结合位点。当蛋白质与聚合物DNA相互作用时,仅使用这个位点。此外,用不同长度的寡核苷酸dT(pT)19、dT(pT)55和dT(pT)69进行的紫外光交联实验表明,DnaB解旋酶六聚体中主要只有一个亚基与DNA接触。在与聚合物核酸的相互作用中,DnaB蛋白对聚(dA)表现出优先的内在亲和力,在我们的标准条件(pH 8.1、10℃、100 mM NaCl、5 mM MgCl2)下,其内在结合常数K = 6±2×10^6 M^-1。这些亲和力与相应溶液条件下单链结合蛋白的亲和力相当,强烈表明解旋酶能够在没有额外促进因子的情况下结合DNA。内在亲和力和协同性都依赖于盐。DnaB - DNA复合物的形成伴随着大约2个离子的净释放,而协同相互作用伴随着另外大约2个离子의净释放。数据表明阴离子对所研究的相互作用有影响,并表明释放的离子很可能来自蛋白质和核酸两者。由六个化学相同的亚基组成的六聚体上存在一个单一的强结合位点、大型解旋酶 - DNA复合物非常小的位点大小以及只有一个亚基参与与核酸的接触,表明DnaB解旋酶中存在长程变构相互作用,这种相互作用涉及整个DnaB六聚体。我们对DnaB蛋白 - (AMP - PNP) - 5'-荧光素 - (dT)20三元复合物的沉降速度测量表明,该复合物的沉降系数为S20,W = 12.3±0.3,而游离酶的沉降系数为S20,W = 10.5±0.3,这表明复合物中酶的流体力学性质发生了很大变化。这些结果提供了直接证据,表明DnaB六聚体经历了剧烈的构象变化,包括三元复合物中酶的所有六个亚基。此外,对三元复合物的沉降速度研究提供了直接证据,表明六聚体是结合单链核酸的物种。讨论了这些结果对DnaB解旋酶在DNA复制中发挥作用的机制模型的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验