Engelhard M, Finkler S, Metz G, Siebert F
Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany.
Eur J Biochem. 1996 Feb 1;235(3):526-33. doi: 10.1111/j.1432-1033.1996.00526.x.
The configuration of an Xaa-Pro bond can be determined by solid-state magic-angle-sample-spinning (MASS)-13C-NMR spectroscopy since the chemical shifts of C beta and Cgamma of the proline ring are sensitive to the isomerization state of the preceding peptide bond. (3-13C)Pro and (4-13C)Pro have been chemically synthesized; the former by means of an asymmetric synthesis. The 13C-labeled Pro residues were biosynthetically incorporated into bacteriorhodopsin with a yield of 80%. The solid-state-MASS-13C-NMR spectra of [(3-13C)Pro]bacteriorhodopsin and [(4-13C)Pro]bacteriorhodopsin revealed isotropic chemical shifts at 29.8 ppm and 25.5 ppm, respectively. From the chemical-shift values we conclude that all Xaa Pro peptide bonds are in the trans configuration confirming previous results from solution-NMR studies on solubilized bacteriorhodopsin in organic solvents [Deber, M.C., Sorrell, B.J. & Xu, G.Y. (1990) Biochem. Biophys. Res. Commun. 172, 862-869]. Inversion-recovery experiments could differentiate between three classes of Pro residues distinguished by their relaxation time t1. Tentatively, these three distinct groups of Pro residues could be assigned to the helical, the loop, and the C-terminal parts of the protein. The resonances of the two C-terminal Pro could be identified by removing the C-terminus by proteolysis. Although they are separated by only one Glu they occupy different chemical environments and possess different flexibilities. These results indicate that the first part of the C-terminal tail is constrained. Pro238 marks the position where the tail becomes freely mobile. It is proposed that the C-terminus is fixed to the membrane via salt bridges between divalent cations and negative charges of the C-terminus as well as interhelical loops.
由于脯氨酸环的Cβ和Cγ的化学位移对前一个肽键的异构化状态敏感,因此可以通过固态魔角样品旋转(MASS)-13C-NMR光谱法确定Xaa-Pro键的构型。(3-13C)脯氨酸和(4-13C)脯氨酸已经化学合成;前者通过不对称合成方法。13C标记的脯氨酸残基通过生物合成掺入细菌视紫红质中,产率为80%。[(3-13C)脯氨酸]细菌视紫红质和[(4-13C)脯氨酸]细菌视紫红质的固态MASS-13C-NMR光谱分别显示各向同性化学位移为29.8 ppm和25.5 ppm。根据化学位移值,我们得出结论,所有Xaa Pro肽键均处于反式构型,这证实了先前在有机溶剂中对溶解的细菌视紫红质进行溶液NMR研究的结果[Deber, M.C., Sorrell, B.J. & Xu, G.Y. (1990) Biochem. Biophys. Res. Commun. 172, 862-869]。反转恢复实验可以区分三类脯氨酸残基,它们由其弛豫时间t1区分。初步地,这三组不同的脯氨酸残基可以分别对应于蛋白质的螺旋部分、环部分和C末端部分。通过蛋白酶解去除C末端可以鉴定两个C末端脯氨酸的共振峰。尽管它们仅被一个谷氨酸隔开,但它们占据不同的化学环境并具有不同的柔韧性。这些结果表明C末端尾巴的第一部分受到限制。脯氨酸238标志着尾巴开始自由移动的位置。有人提出,C末端通过二价阳离子与C末端的负电荷以及螺旋间环之间的盐桥固定在膜上。