Suppr超能文献

非洲爪蟾胚胎神经突整合并对同时存在的电导向和黏附导向线索做出反应。

Embryonic Xenopus neurites integrate and respond to simultaneous electrical and adhesive guidance cues.

作者信息

Britland S, McCaig C

机构信息

Department of Cell Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.

出版信息

Exp Cell Res. 1996 Jul 10;226(1):31-8. doi: 10.1006/excr.1996.0199.

Abstract

Nerve cells detect and respond to multiple extrinsic guidance cues during development and regeneration using a motile growth cone. Navigational decisions may be required of the growth cone when different guidance cues are encountered simultaneously. We have tested the relative potencies of two opposing cues by presenting Xenopus spinal cord nerve cells growing on a micropatterned laminin culture substratum with an orthogonal DC electric field. Substrata composed of repeating 25-micron laminin tracks and spaces failed to influence the position of neuritogenesis from nerve cell soma. Once established, however, growth cone movement was constrained by laminin tracks such that neurites of 65% of cells were aligned after 5 h in vitro. Two hours after the application of a 100-140 mV/mm DC field the majority of cells remained aligned with the laminin tracks. Around 70% of Xenopus neurites normally orient cathodally on homogenous laminin substrata; therefore the galvanotropic response was impeded by prior exposure to a patterned laminin substrate. However, a proportion of aligned neurites did orient cathodally and evidence of a response to both directional cues was even found within the same cell. Video-enhanced contrast, differential interference contrast (VEC-DIC) microscopy was used to examine the detailed behavior of growth cones on micropatterned laminin substrata. The present study has demonstrated that growth cones can detect and integrate at least two morphogenetic guidance cues simultaneously. The strength of the galvanotropic response in Xenopus growth cones, however, was often insufficient to override established adhesive guidance in this model system.

摘要

在发育和再生过程中,神经细胞利用能动的生长锥来检测并响应多种外在导向线索。当同时遇到不同的导向线索时,生长锥可能需要做出导航决策。我们通过向生长在微图案化层粘连蛋白培养基质上的非洲爪蟾脊髓神经细胞施加正交直流电场,来测试两种相反线索的相对效力。由重复的25微米层粘连蛋白轨道和间隔组成的基质未能影响神经细胞体神经发生的位置。然而,一旦生长锥形成,其运动就受到层粘连蛋白轨道的限制,以至于在体外培养5小时后,65%的细胞的神经突排列整齐。在施加100 - 140 mV/mm的直流电场两小时后,大多数细胞仍与层粘连蛋白轨道对齐。在均匀的层粘连蛋白基质上,大约70%的非洲爪蟾神经突通常向阴极方向定向;因此,先前暴露于图案化层粘连蛋白底物会阻碍电趋性反应。然而,一部分排列整齐的神经突确实向阴极方向定向,并且在同一细胞内甚至发现了对两种定向线索都有反应的证据。使用视频增强对比度、微分干涉对比度(VEC - DIC)显微镜来检查生长锥在微图案化层粘连蛋白基质上的详细行为。本研究表明,生长锥能够同时检测并整合至少两种形态发生导向线索。然而,在这个模型系统中,非洲爪蟾生长锥的电趋性反应强度往往不足以克服已建立的黏附导向作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验