Cook J R, Cleary C M, Mariano T M, Izotova L, Pestka S
Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA.
J Biol Chem. 1996 Jun 7;271(23):13448-53. doi: 10.1074/jbc.271.23.13448.
Chinese hamster ovary cells containing the yeast artificial chromosome F136C5 (alphaYAC) respond to all type I human interferons including IFN-alphaA, IFN-beta, and IFN-omega. The alphaYAC contains at least two genes encoding interferon-alpha receptor (IFN-alphaR) chains that are required for response to type I human interferons: Hu-IFN-alphaR1 and Hu-IFN-alphaR2. We previously isolated a splice variant of the Hu-IFN-alphaR1 chain designated Hu-IFN-alphaR1s. Chinese hamster ovary cells containing a disrupted alphaYAC, which contains a deletion in the human IFNAR1 gene, were transfected with expression vectors for the Hu-IFN-alphaR1 and Hu-IFN-alphaR1s chains. With these cells, two type I interferons have been identified which can interact with the splice variant (Hu-IFN-alphaR1s) and with the Hu-IFN-alphaR1 chains: Hu-IFN-alphaA and IFN-omega. Two other type I interferons, Hu-IFN-alphaB2 and Hu-IFN-alphaF, are capable of signaling through the Hu-IFN-alphaR1 chain only and cannot utilize the splice variant Hu-IFN-alphaR1s. Hu-IFN-alphaR1 and Hu-IFN-alphaR1s differ in that the latter is missing a single subdomain of the receptor extracellular domain encoded by exons 4 and 5 of the IFNAR1 gene. These results therefore indicate that different type I interferons require different subdomains of the Hu-IFN-alphaR1 receptor chain, and that the splice variant chain (Hu-IFN-alphaR1s) is functional.