Suppr超能文献

Cloning, characterization, and modeling of mouse and human guanylate kinases.

作者信息

Brady W A, Kokoris M S, Fitzgibbon M, Black M E

机构信息

Darwin Molecular Corporation, Bothell, Washington 98021, USA.

出版信息

J Biol Chem. 1996 Jul 12;271(28):16734-40. doi: 10.1074/jbc.271.28.16734.

Abstract

Guanylate kinase catalyzes the phosphorylation of either GMP to GDP or dGMP to dGDP and is an essential enzyme in nucleotide metabolism pathways. Despite its involvement in antiviral drug activation in humans and in mouse model systems and as a target for chemotherapy, the human and mouse primary structures have never been elucidated. Full-length cDNA clones encoding enzymatically active guanylate kinase were isolated from mouse B-cell lymphoma and human peripheral blood lymphocyte cDNA libraries. Multiple tissue Northern blots demonstrated an mRNA species of approximately 1 kilobase for both mice and humans in all tissue types examined. The mouse cDNA is predicted to encode a 198-amino acid protein with a molecular mass of 21,904 daltons. The human cDNA is predicted to encode a 197-amino acid protein with a molecular mass of 21,696 daltons. These proteins share 88% sequence identity with each other and 52-54% identity with the yeast guanylate kinase. Molecular modeling using the yeast diffraction coordinates indicates a high degree of conservation within the active site and maintenance of the overall structural integrity, despite a lack of similarity along the periphery of the enzyme.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验