Moënne-Loccoz P, Nakamura N, Itoh S, Fukuzumi S, Gorren A C, Duine J A, Sanders-Loehr J
Department of Chemistry, Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, 97291-1000, USA.
Biochemistry. 1996 Apr 16;35(15):4713-20. doi: 10.1021/bi952641q.
Methylamine dehydrogenase (MADH) utilizes its endogenous tryptophan tryptophylquinone (TTQ) as a cofactor in enzymatic catalysis, with the C6 carbonyl of the quinone implicated as the site of attack by substrates and other nucleophiles. Resonance Raman (RR) spectroscopy provides an ideal method for investigating the state of this carbonyl group whose C==O stretch is distinct from other vibrational modes of the cofactor and is readily identified by its shift to lower energy in H218O. In a series of indole 6,7-quinone models for TTQ, the in-phase stretching vibration of the two C==O groups occurs at 1650 cm-1 in nonpolar solvents and shifts to 1638 cm-1 in H2O. The absorption maximum undergoes an analogous shift from 400 to 425 mm. The spectral properties of the indole quinones in H2O approach the corresponding values in Thiobacillus versutus MADH (C==O stretch at 1612 cm-1, lamdamax at 440mm) and are indicative of strongly hydrogen bonding of the C==O and NH groups of the cofactor in the native enzyme. Addition of monovalent cations [NH4+,Cs+, and (CH3)3NH+] to MADH causes further increases in the lamdamax and decreases in the frequency of the C==O stretch[1590 cm-1 with (CH3)3NH+]. This implies a strong electrostatic interaction between monovalent cations and a carbonyl oxygen (most likely at C6) in TTQ. The fact that these cations behave as competitive inhibitors of the methylamine substrate suggests that methylamine binds to the same location in the enzyme prior to its covalent reaction with the cofactor. Addition of monovalent cations to the one-electron-reduced semiquinone form MADH results in RR spectral shifts for a number of vibrational modes of the cofactor. Thus, the ability of monovalent cations to promote and stabilize the formation of the semiquinone intermediate is also due to their direct electrostatic interaction with the TTQ cofactor.
甲胺脱氢酶(MADH)在酶催化过程中利用其内源的色氨酸-色氨酰醌(TTQ)作为辅因子,醌的C6羰基被认为是底物和其他亲核试剂的攻击位点。共振拉曼(RR)光谱为研究该羰基的状态提供了一种理想的方法,其C==O伸缩振动与辅因子的其他振动模式不同,并且在H218O中通过其向较低能量的位移很容易被识别。在一系列TTQ的吲哚6,7-醌模型中,两个C==O基团的同相伸缩振动在非极性溶剂中出现在1650 cm-1处,在H2O中移至1638 cm-1。最大吸收波长发生类似的位移,从400 nm移至425 nm。吲哚醌在H2O中的光谱特性接近硫杆菌MADH中的相应值(C==O伸缩振动在1612 cm-1,最大吸收波长在440 nm),这表明天然酶中辅因子的C==O和NH基团存在强烈的氢键作用。向MADH中添加单价阳离子[NH4+、Cs+和(CH3)3NH+]会导致最大吸收波长进一步增加,C==O伸缩振动频率降低[与(CH3)3NH+结合时为1590 cm-1]。这意味着单价阳离子与TTQ中的羰基氧(最可能在C6)之间存在强烈的静电相互作用。这些阳离子作为甲胺底物的竞争性抑制剂这一事实表明,甲胺在与辅因子发生共价反应之前与酶中的同一位置结合。向单电子还原的半醌形式的MADH中添加单价阳离子会导致辅因子的多种振动模式的RR光谱发生位移。因此,单价阳离子促进和稳定半醌中间体形成的能力也是由于它们与TTQ辅因子的直接静电相互作用。