Suppr超能文献

肿瘤患病率数据的非参数检验。

Nonparametric tests of tumor prevalence data.

作者信息

Sun J, Kalbfleisch J D

机构信息

Department of Statistics & Actuarial Science, University of Waterloo, Canada.

出版信息

Biometrics. 1996 Jun;52(2):726-31.

PMID:8672708
Abstract

This note discusses the statistical analysis of tumor prevalence data arising from tumorgenicity experiments with focus on the comparison of different treatments. In this situation, the commonly used tests can be classified into two types: interval-based tests and model-based tests (Hoel, D. G. and Walburg, H. E., 1972, Journal of the National Cancer Institute 49, 361-372; Dinse, G. E. and Lagakos, S. W. 1983, Applied Statistics 32, 236-248). It is known that the results obtained from the interval-based tests may vary according to the choice of intervals and, for the model-based tests, it may be difficult to justify the assumed model. A computationally simple alternative to these tests is proposed; this alternative is not interval-based and makes no strong model assumption. The results of a simulation study comparing the proposed test with other tests are presented and suggest that the proposed approach is quite satisfactory.

摘要

本笔记讨论了肿瘤发生实验中肿瘤患病率数据的统计分析,重点在于不同治疗方法的比较。在这种情况下,常用的检验可分为两类:基于区间的检验和基于模型的检验(Hoel, D. G. 和 Walburg, H. E., 1972年,《国家癌症研究所杂志》49卷,361 - 372页;Dinse, G. E. 和 Lagakos, S. W. 1983年,《应用统计学》32卷,236 - 248页)。众所周知,基于区间的检验所得结果可能会因区间的选择而有所不同,而对于基于模型的检验,可能难以证明所假定模型的合理性。本文提出了一种计算简单的替代检验方法;该替代方法不是基于区间的,且不做强模型假设。文中展示了一项模拟研究的结果,该研究将所提出的检验方法与其他检验方法进行了比较,结果表明所提出的方法相当令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验