Suppr超能文献

人工神经网络能让我们对具有锥体外系特征的神经退行性疾病有哪些了解?

What can artificial neural networks teach us about neurodegenerative disorders with extrapyramidal features?

作者信息

Litvan I, DeLeo J M, Hauw J J, Daniel S E, Jellinger K, McKee A, Dickson D, Horoupian D S, Lantos P L, Tabaton M

机构信息

Neuroepidemiology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9130, USA.

出版信息

Brain. 1996 Jun;119 ( Pt 3):831-9. doi: 10.1093/brain/119.3.831.

Abstract

Artificial neural networks (ANNs), computer paradigms that can learn, excel in pattern recognition tasks such as disease diagnosis. Artificial neural networks operate in two different learning modes: supervised, in which a known diagnostic outcome is presented to the ANN, and unsupervised, in which the diagnostic outcome is not presented. A supervised learning ANN could emulate human expert diagnostic performance and identify relevant predictive markers in the diagnostic task, while an unsupervised learning ANN could suggest reasonable alternative diagnostic classification criteria. In the present study, we used ANN methodology to try to overcome the neuropathological difficulties in differentiating the subtypes of progressive supranuclear palsy (PSP), and in differentiating PSP from postencephalitic parkinsonism (PEP) and corticobasal degeneration, or Pick's disease from corticobasal degeneration. First, we applied supervised learning ANN to classify 62 cases of these disorders and to identify diagnostic markers that distinguish them. In a second experiment, we used unsupervised learning ANN to investigate possible alternative nosological classifications. Artificial neural networks input data for each case consisted of values representing histological features, including neurofibrillary tangles, neuronal loss and gliosis found in multiple brain sampling areas. The supervised learning ANN achieved excellent accuracy in classifying PSP but had difficulty classifying the other disorders. This method identified a few features that might help to differentiate PEP, supported currently proposed criteria for Pick's disease, corticobasal degeneration and typical PSP, but detected no features to characterize the atypical subtype of PSP. In general, unsupervised learning ANN supported the present nosological classification for PSP, PEP, Pick's disease and corticobasal degeneration, although it overlapped some groups. Artificial neural networks methodology appears promising for studying neurodegenerative disorders.

摘要

人工神经网络(ANNs)是一种能够学习的计算机范式,在疾病诊断等模式识别任务中表现出色。人工神经网络以两种不同的学习模式运行:监督式,即将已知的诊断结果呈现给人工神经网络;非监督式,即不呈现诊断结果。监督式学习的人工神经网络可以模拟人类专家的诊断表现,并在诊断任务中识别相关的预测标志物,而非监督式学习的人工神经网络可以提出合理的替代诊断分类标准。在本研究中,我们使用人工神经网络方法试图克服在区分进行性核上性麻痹(PSP)亚型,以及区分PSP与脑炎后帕金森综合征(PEP)、皮质基底节变性,或区分皮质基底节变性与匹克病时所面临的神经病理学困难。首先,我们应用监督式学习的人工神经网络对62例这些疾病进行分类,并识别区分它们的诊断标志物。在第二个实验中,我们使用非监督式学习的人工神经网络来研究可能的替代疾病分类法。人工神经网络输入的每个病例的数据由代表组织学特征的值组成,包括在多个脑采样区域发现的神经原纤维缠结、神经元丢失和胶质增生。监督式学习的人工神经网络在分类PSP方面取得了优异的准确性,但在分类其他疾病时遇到了困难。该方法识别出了一些可能有助于区分PEP的特征,支持了目前提出的匹克病、皮质基底节变性和典型PSP的标准,但未检测到表征PSP非典型亚型的特征。总体而言,非监督式学习的人工神经网络支持目前对PSP、PEP,、匹克病和皮质基底节变性的疾病分类,尽管它使一些组有重叠。人工神经网络方法在研究神经退行性疾病方面似乎很有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验