Suppr超能文献

超声图像的多分辨率贝叶斯分割

Multiple resolution Bayesian segmentation of ultrasound images.

作者信息

Ashton E A, Parker K J

机构信息

Department of Electrical Engineering, University of Rochester, NY 14627, USA.

出版信息

Ultrason Imaging. 1995 Oct;17(4):291-304. doi: 10.1177/016173469501700403.

Abstract

We propose a novel method for obtaining the maximum a posteriori (MAP) probabilistic segmentation of speckle-laden ultrasound images. Our technique is multiple-resolution based, and relies on the conversion of speckle images with Rayleigh statistics to subsampled images with Gaussian statistics. This conversion reduces computation time, as well as allowing accurate parameter estimation for a probabilistic segmentation algorithm. Results appear to provide improvements over previous techniques in terms of low-contrast detail and accuracy.

摘要

我们提出了一种用于获取含斑点超声图像的最大后验概率(MAP)概率分割的新方法。我们的技术基于多分辨率,并依赖于将具有瑞利统计特性的斑点图像转换为具有高斯统计特性的子采样图像。这种转换减少了计算时间,同时也允许对概率分割算法进行准确的参数估计。结果显示,在低对比度细节和准确性方面,该方法比以前的技术有所改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验