Strambini G B, Cioni P, Cook P F
Consiglio Nazionale della Ricerche-Istituto di Biofisica, Pisa, Italy.
Biochemistry. 1996 Jun 25;35(25):8392-400. doi: 10.1021/bi952919e.
O-Acetylserine sulfhydrylase A (OASS-A) is a pyridoxal 5'-phosphate- (PLP-) dependent enzyme that catalyzes the last step in the synthesis of L-cysteine, the beta-replacement of acetate in O-acetyl-L-serine (OAS) by sulfide. The phosphorescence properties of the two tryptophans of wild-type OASS-A, W51 and W162, and of W162 in the W51Y mutant protein have been characterized over the temperature range 170-273 K. In glasses at 170 K, the apoenzyme exhibits a phosphorescence spectrum which is the superposition of two spectra with well-resolved 0,0 vibronic bands centered at 405 and 410 nm, the blue lambda max suggesting that one of the two Trp residues in OASS-A is in a polar pocket, while the other is in a relatively hydrophobic pocket. The presence of PLP in the OASS-A holoenzyme reduces the intrinsic fluorescence by 40-45%, but the spectrum is unaltered except for the appearance of the internal Schiff base ketoenamine fluorescence band centered at 484 nm. The phosphorescence is strongly quenched by PLP, with about 70% reduction in intensity and lifetime. Further, the phosphorescence spectrum of the holoprotein exhibits a single and narrow 0,0 vibronic band centered at 405 nm and a broad band in the 450-550-nm range resulting from delayed fluorescence of the ketoenamine tautomer of the internal Schiff base, sensitized by triplet-singlet energy transfer from tryptophan to the ketoenamine tautomer of PLP. Comparison with data obtained for the W51Y mutant strongly suggests that the 405-nm phosphorescence band derives from W162, and that W51 in the wild type is entirely quenched either by singlet or triplet energy transfer to PLP or by some local group in the protein. From the rate of energy transfer, the separation between W162 and PLP is estimated to be about 25 A. Substrates other than OAS affect only the intensity of the coenzyme fluorescence band (484 nm) and the intensity of delayed fluorescence relative to that of phosphorescence, effects that are attributable to changes in fluorescence quantum yield of the ketoenamine chromophore. Addition of OAS, on the other hand, leads to a splitting of the 0,0 vibronic band in the phosphorescence spectrum of W162, yielding poorly resolved peaks at 406 and 408.5 nm, indicating thereby a change in the environment of the tryptophan residue and therefore in the conformation of the macromolecule as the internal Schiff base is converted to the alpha-aminoacrylate Schiff base. In buffer at 273 K, both the fluorescence and phosphorescence spectra relax to longer wavelengths and the phosphorescence lifetime is reduced to a few milliseconds, all indications that W162 is in a flexible region of the macromolecule, probably in close proximity to the aqueous interface. The phosphorescence lifetime in fluid medium reveals conformational heterogeneity in OASS-A and unveils important structure modulating effects of cofactor, substrates, and pH. Binding of PLP to the apoprotein increases the rigidity of the polypeptide in the region of W162 (in agreement with the greater thermal stability of the holoprotein), while OAS and L-serine have an opposite effect. Increasing the pH from 6.5 to 9 results in a 1.7-fold increase in tau av and a change in the relative amplitudes of the two lifetime components. Since the phosphorescence originates from a single tryptophan residue, the two tau components reflect distinct conformations of the subunit. In this case the conformational equilibrium (slow on the phosphorescence time scale) is governed by one or more groups in the protein with a pK around 8.
O-乙酰丝氨酸巯基酶A(OASS-A)是一种依赖于磷酸吡哆醛(PLP)的酶,它催化L-半胱氨酸合成的最后一步,即硫化物对O-乙酰-L-丝氨酸(OAS)中乙酸盐的β取代。已对野生型OASS-A的两个色氨酸W51和W162以及W51Y突变蛋白中W162在170 - 273 K温度范围内的磷光特性进行了表征。在170 K的玻璃态中,脱辅酶呈现出一种磷光光谱,该光谱是两个光谱的叠加,其0,0振动带分辨良好,中心分别位于405和410 nm,蓝色的最大波长表明OASS-A中的两个色氨酸残基之一处于极性口袋中,而另一个处于相对疏水的口袋中。OASS-A全酶中PLP的存在使固有荧光降低40 - 45%,但除了出现中心位于484 nm的内部席夫碱酮烯胺荧光带外,光谱未发生改变。PLP强烈猝灭磷光,强度和寿命降低约70%。此外,全蛋白的磷光光谱呈现出一个中心位于405 nm的单一且狭窄的0,0振动带以及一个在450 - 550 nm范围内的宽带,这是由内部席夫碱的酮烯胺互变异构体的延迟荧光产生的,通过从色氨酸到PLP的酮烯胺互变异构体的三线态 - 单线态能量转移而敏化。与W51Y突变体获得的数据比较强烈表明,405 nm的磷光带源自W162,并且野生型中的W51通过单线态或三线态能量转移到PLP或通过蛋白质中的一些局部基团而完全猝灭。根据能量转移速率,估计W162与PLP之间的距离约为25 Å。除OAS外的其他底物仅影响辅酶荧光带(484 nm)的强度以及延迟荧光相对于磷光的强度,这些影响归因于酮烯胺发色团荧光量子产率的变化。另一方面,添加OAS会导致W162磷光光谱中的0,0振动带分裂,在406和408.5 nm处产生分辨不佳的峰,从而表明随着内部席夫碱转化为α - 氨基丙烯酸席夫碱,色氨酸残基的环境发生了变化,进而大分子的构象也发生了变化。在273 K的缓冲液中,荧光和磷光光谱都弛豫到更长波长,并且磷光寿命降低到几毫秒,所有这些都表明W162处于大分子的一个柔性区域,可能靠近水界面。流体介质中的磷光寿命揭示了OASS-A中的构象异质性,并揭示了辅因子、底物和pH的重要结构调节作用。PLP与脱辅基蛋白的结合增加了W162区域多肽的刚性(与全蛋白更高的热稳定性一致),而OAS和L - 丝氨酸则具有相反的作用。将pH从6.5提高到9会导致平均寿命τ增加1.7倍,并且两个寿命组分的相对振幅发生变化。由于磷光源自单个色氨酸残基,两个τ组分反映了亚基的不同构象。在这种情况下,构象平衡(在磷光时间尺度上较慢)由蛋白质中一个或多个pK约为8的基团控制。