Suppr超能文献

Expression of tyrosine hydroxylase in an immortalized human fetal astrocyte cell line; in vitro characterization and engraftment into the rodent striatum.

作者信息

Tornatore C, Baker-Cairns B, Yadid G, Hamilton R, Meyers K, Atwood W, Cummins A, Tanner V, Major E

机构信息

Molecular Therapeutics Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Cell Transplant. 1996 Mar-Apr;5(2):145-63. doi: 10.1177/096368979600500206.

Abstract

The use of primary human fetal tissue in the treatment of neurodegenerative disorders, while promising, faces several difficult technical and ethical issues. An alternative approach that would obviate these problems would be to use immortalized cell lines of human fetal central nervous system origin. An immortalized human fetal astrocyte cell line (SVG) has been established (45) and herein we describe the in vitro and in vivo characteristics of this cell line which suggest that it may be a useful vehicle for neural transplantation. The SVG cell line is vimentin, GFAP, Thy 1.1 and MHC class I positive, and negative for neurofilament and neuron specific enolase, consistent with its glial origin. To determine whether the cell line could be used as a drug delivery system, a cDNA expression vector for tyrosine hydroxylase was constructed (phTH/Neo) and stably expressed in the SVG cells for over 18 months as demonstrated by immunohistochemistry and Western blotting of the stable transfectants. HPLC analysis of the supernatant from these cells, termed SVG-TH, consistently found 4-6 pmol/ml/min of l-dopa produced with the addition of BH4 to the media. Furthermore, in cocultivation experiments with hNT neurons, PC-12 cells and primary rat fetal mesencephalic tissue, both the SVG and SVG-TH cells demonstrated neurotrophic potential, suggesting that they constituitively express factors with neuroregenerative potential. To determine the viability of these cells in vivo, SVG-TH cells were grafted into the striatum of Sprague-Dawley rats and followed over time. A panel of antibodies was used to unequivocally differentiate the engrafted cells from the host parenchyma, including antibodies to: SV40 large T antigen (expressed in the SVG-TH cells), human and rat MHC class 1, vimentin, GFAP, and tyrosine hydroxylase. While the graft was easily identified with the first week, over the course of a four week period of time the engrafted cells decreased in number. Concomittantly, rat CD4 and CD8 expression in the vicinity of the graft increased, consistent with xenograft rejection. When the SVG-TH cells were grafted to the lesioned striatum of a 6-hydroxydopamine lesioned rats, rotational behavior of the rat decreased as much as 80% initially, then slowly returned to baseline over the next four weeks, parallelling graft rejection. Thus, the SVG-TH cells can induce a functional recovery in an animal model of Parkinson's disease, however as a xenograft, the SVG cells are recognized by the immune system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验