Suppr超能文献

多品种群体中使用限制最大似然法估计正定协方差矩阵的无约束程序。

Unconstrained procedures for the estimation of positive definite covariance matrices using restricted maximum likelihood in multibreed populations.

作者信息

Elzo M A

机构信息

Animal Science Department, University of Florida, Gainesville 32611, USA.

出版信息

J Anim Sci. 1996 Feb;74(2):317-28. doi: 10.2527/1996.742317x.

Abstract

Two unconstrained procedures to ensure that intrabreed and interbreed genetic and environmental covariance estimates for multibreed populations are computed within the permissible ranges were developed. These procedures were called Partial Scoring and Cholesky Maximization. The Partial Scoring procedure uses partial steps to keep estimates of covariance matrices positive definite at each expectation-maximization (EM) iteration, and the Cholesky Maximization procedure achieves the same goal by computing the elements of the Cholesky Decomposition of each intrabreed and interbreed genetic and environmental covariance matrix. Groups of small simulated data sets containing either direct genetic effects of two traits (90 bulls, 13,500 calves) or direct and maternal genetic effects for a single trait (135 bulls, 32,400 calves) were used to test the computational feasibility of these two procedures. The overall means (and ranges) of the numbers of expectation-maximization iterations, times to convergence, and accuracy of estimation were 10 (2 to 184), 26.2 min (4.1 to 773.2 min), and 40.1% (12.7 to 81.9%) for the Partial Scoring procedure and 7 (3 to 37), 16.7 min (9.5 to 64.6 min), and 37.8% (3.1 to 67.8%) for the Cholesky Maximization procedure. Although the overall accuracy of both procedures was similar, the Cholesky Maximization procedure should be preferred because it converged faster and its covariance estimates were less affected by the values of the covariance priors than those computed using the Partial Scoring strategy. Application to large unbalanced multibreed data sets will require an iterative version of these procedures.

摘要

开发了两种无约束程序,以确保在允许范围内计算多品种群体的品种内和品种间遗传及环境协方差估计值。这些程序被称为部分评分法和乔列斯基最大化法。部分评分法使用部分步骤在每次期望最大化(EM)迭代时保持协方差矩阵的估计为正定,而乔列斯基最大化法则通过计算每个品种内和品种间遗传及环境协方差矩阵的乔列斯基分解元素来实现相同目标。使用包含两个性状直接遗传效应(90头公牛,13500头小牛)或单个性状直接和母体遗传效应(135头公牛,32400头小牛)的小型模拟数据集组来测试这两种程序的计算可行性。部分评分法的期望最大化迭代次数、收敛时间和估计准确性的总体均值(及范围)分别为10(2至184)、26.2分钟(4.1至773.2分钟)和40.1%(12.7至81.9%),乔列斯基最大化法的分别为7(3至37)、16.7分钟(9.5至64.6分钟)和37.8%(3.1至67.8%)。尽管两种程序的总体准确性相似,但乔列斯基最大化法更可取,因为它收敛更快,其协方差估计值受协方差先验值的影响比使用部分评分策略计算的要小。将这些程序应用于大型不平衡多品种数据集将需要其迭代版本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验