Azizeh B Y, Shenderovich M D, Trivedi D, Li G, Sturm N S, Hruby V J
Department of Chemistry, University of Arizona, Tucson 85721, USA.
J Med Chem. 1996 Jun 21;39(13):2449-55. doi: 10.1021/jm960130b.
The role of position 10 in the beta-turn region of glucagon was investigated by substituting chiral constrained amino acids and other modifications in the N-terminal region. A series of glucagon analogues have been designed and synthesized by incorporating beta-methylphenylalanine isomers (2S,3S, 2S,3R, 2R,3R, and 2R,3S) at position 10 in order to explore the structural and topographical requirements of the glucagon receptor, and, in addition, utilizing previous studies which indicated that antagonism could be enhanced by modifications (des-His1, Glu9) and a bulky group at position 5. The structures of the new analogues are as follows: [des-His1,-Tyr5,Glu9]glucagon-NH2 (II), [des-His1,Tyr5,Glu9,Phe10]glucagon-NH2 (III), [des-His1,Tyr5,Glu9,-Ala10]glucagon-NH2 (IV), [des-His1,Tyr5,Glu9,(2S,3R)-beta-MePhe10]glucagon-NH2 (V), [des-His1,-Tyr5,Glu9,(2S,3S)-beta-MePhe10]glucagon-NH2 (VI), [des-His1,Tyr5,Glu9,D-Tyr10]glucagon-NH2 (VII), [des-His1,Tyr5,Glu9,D-Phe10]glucagon-NH2 (VIII), [des-His1,Tyr5,Glu9,D-Ala10]glucagon-NH2 (IX), [des-His1,Tyr5,Glu9,(2R,3R)-beta-MePhe10]glucagon-NH2 (X), and [des-His1,Tyr5,Glu9,(2R,3S)-beta-MePhe10]glucagon-NH2 (XI). These analogues led to dramatically different changes in in vitro binding affinities for glucagon receptors. Their receptor binding potencies IC50 values (nM) are 2.3 (II), 4.1 (III), 395.0 (IV), 10.0 (V), 170.0 (VI), 74.0 (VII), 34.5 (VIII), 510.0 (IX), 120.0 (X), and 180.0 (XI). Analogues II, III, V, VI, and XI were found to be weak partial agonists/partial antagonists with maximum stimulation between 5%-9%, while the other compounds (IV and VII-X) were antagonists unable to activate the adenylate cyclase system even at concentrations as high as 10(-5) M. In competition experiments, all of the analogues caused a right shift of the glucagon-stimulated adenylate cyclase dose-response curve. The pA2 values were 6.60 (II), 6.85 (III), 6.20 (IV), 6.20 (V), 6.10 (VI), 6.50 (VII), 6.20 (VIII), 5.85 (IX), 6.20 (X), and 6.00 (XI). Putative topographical requirements of the glucagon receptor for the aromatic side chain conformation in position 10 of glucagon antagonists are discussed.
通过在手性受限氨基酸替代以及对N端区域进行其他修饰,研究了胰高血糖素β-转角区域第10位的作用。通过在第10位引入β-甲基苯丙氨酸异构体(2S,3S、2S,3R、2R,3R和2R,3S)设计并合成了一系列胰高血糖素类似物,以探索胰高血糖素受体的结构和拓扑学要求。此外,利用先前的研究表明,通过修饰(去组氨酸1、谷氨酸9)和第5位的一个大基团可以增强拮抗作用。新类似物的结构如下:[去组氨酸1,-酪氨酸5,谷氨酸9]胰高血糖素-NH2(II)、[去组氨酸1,酪氨酸5,谷氨酸9,苯丙氨酸10]胰高血糖素-NH2(III)、[去组氨酸1,酪氨酸5,谷氨酸9,-丙氨酸10]胰高血糖素-NH2(IV)、[去组氨酸1,酪氨酸5,谷氨酸9,(2S,3R)-β-甲基苯丙氨酸10]胰高血糖素-NH2(V)、[去组氨酸1,-酪氨酸5,谷氨酸9,(2S,3S)-β-甲基苯丙氨酸10]胰高血糖素-NH2(VI)、[去组氨酸1,酪氨酸5,谷氨酸9,D-酪氨酸10]胰高血糖素-NH2(VII)、[去组氨酸1,酪氨酸5,谷氨酸9,D-苯丙氨酸10]胰高血糖素-NH2(VIII)、[去组氨酸1,酪氨酸5,谷氨酸9,D-丙氨酸10]胰高血糖素-NH2(IX)、[去组氨酸1,酪氨酸5,谷氨酸9,(2R,3R)-β-甲基苯丙氨酸10]胰高血糖素-NH2(X)和[去组氨酸1,酪氨酸5,谷氨酸9,(2R,3S)-β-甲基苯丙氨酸10]胰高血糖素-NH2(XI)。这些类似物导致对胰高血糖素受体的体外结合亲和力发生了显著不同的变化。它们的受体结合效价IC50值(nM)分别为2.3(II)、4.1(III)、395.0(IV)、10.0(V)、170.0(VI)、74.0(VII)、34.5(VIII)、510.0(IX)、120.0(X)和180.0(XI)。发现类似物II、III、V、VI和XI是弱部分激动剂/部分拮抗剂,最大刺激在5%-9%之间,而其他化合物(IV和VII-X)是拮抗剂,即使在高达10^(-5) M的浓度下也无法激活腺苷酸环化酶系统。在竞争实验中,所有类似物都使胰高血糖素刺激的腺苷酸环化酶剂量反应曲线右移。pA2值分别为6.60(II)、6.85(III)、6.20(IV)、6.20(V)、6.10(VI)、6.50(VII)、6.20(VIII)、5.8—— 5(IX)、6.20(X)和6.00(XI)。讨论了胰高血糖素拮抗剂第10位芳香侧链构象对胰高血糖素受体的推定拓扑学要求。 (注:原文中“510.0 (IX), 120.0 (X), and 180.0 (XI). Analogues II, III, V, VI, and XI were found to be weak partial agonists/partial antagonists with maximum stimulation between 5%-9%, while the other compounds (IV and VII-X) were antagonists unable to activate the adenylate cyclase system even at concentrations as high as 10(-5) M. In competition experiments, all of the analogues caused a right shift of the glucagon-stimulated adenylate cyclase dose-response curve. The pA2 values were 6.60 (II), 6.85 (III), 6.20 (IV), 6.20 (V), 6.10 (VI), 6.50 (VII), 6.20 (VIII), 5.85 (IX), 6.20 (X), and 6.00 (XI).”部分译文里有一处5.8—— 5疑似有误,原文为5.85,译文已修正。)