Schoonjans K, Staels B, Auwerx J
L.B.R.E., Unité 325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France.
Biochim Biophys Acta. 1996 Jul 26;1302(2):93-109. doi: 10.1016/0005-2760(96)00066-5.
The three types of peroxisome proliferator activated receptor (PPAR), alpha, beta (or delta), and gamma, each with a specific tissue distribution, compose a subfamily of the nuclear hormone receptor gene family. Although peroxisome proliferators, including fibrates and fatty acids, activate the transcriptional activity of these receptors, only prostaglandin J2 derivatives have been identified as natural ligands of the PPAR gamma subtype, which also binds thiazolidinedione antidiabetic agents with high affinity. Activated PPARs heterodimerize with RXR and alter the transcription of target genes after binding to specific response elements or PPREs, consisting of a direct repeat of the nuclear receptor hexameric DNA core recognition motif spaced by one nucleotide. The different PPARs can be considered key messengers responsible for the translation of nutritional, pharmacological and metabolic stimuli into changes in the expression of genes, more specifically those genes involved in lipid metabolism. PPAR alpha is involved in stimulating beta-oxidation of fatty acids. In rodents, a PPAR alpha-mediated change in the expression of genes involved in fatty acid metabolism lies at the basis of the phenomenon of peroxisome proliferation, a pleiotropic cellular response, mainly limited to liver and kidney and which can lead to hepatocarcinogenesis. In addition to their role in peroxisome proliferation in rodents, PPAR is also involved in the control of HDL cholesterol levels by fibrates and fatty acids in rodents and humans. This effect is, at least partially, based on a PPAR-mediated transcriptional regulation of the major HDL apolipoproteins, apo A-I and apo A-II. The hypotriglyceridemic action of fibrates and fatty acids also involves PPARs and can be summarized as follows: (1) an increased lipolysis and clearance of remnant particles, due to changes in LPL and apo C-III levels, (2) a stimulation of cellular fatty acid uptake and their conversion to acyl-CoA derivatives by the induction of FAT, FATP and ACS activity, (3) an induction of fatty acid beta-oxidation pathways, (4) a reduction in fatty acid and triglyceride synthesis, and finally (5) a decrease in VLDL production. Hence, both enhanced catabolism of triglyceride-rich particles as well as reduced secretion of VLDL particles are mechanisms that contribute to the hypolipidemic effect of fibrates and FFAs. Whereas for PPAR beta no function so far has been identified, PPAR gamma triggers adipocyte differentiation by inducing the expression of several genes critical for adipogenesis.
过氧化物酶体增殖物激活受体(PPAR)有α、β(或δ)和γ三种类型,每种都有特定的组织分布,它们构成了核激素受体基因家族的一个亚家族。尽管包括贝特类药物和脂肪酸在内的过氧化物酶体增殖剂可激活这些受体的转录活性,但只有前列腺素J2衍生物被确定为PPARγ亚型的天然配体,该亚型还能与噻唑烷二酮类抗糖尿病药物高亲和力结合。激活的PPAR与视黄酸X受体(RXR)形成异二聚体,并在与由一个核苷酸间隔的核受体六聚体DNA核心识别基序的直接重复序列组成的特定反应元件或PPRE结合后,改变靶基因的转录。不同的PPAR可被视为关键信使,负责将营养、药理和代谢刺激转化为基因表达的变化,更具体地说是那些参与脂质代谢的基因的表达变化。PPARα参与刺激脂肪酸的β氧化。在啮齿动物中,PPARα介导的脂肪酸代谢相关基因表达的变化是过氧化物酶体增殖现象的基础,过氧化物酶体增殖是一种多效性细胞反应,主要局限于肝脏和肾脏,可能导致肝癌发生。除了在啮齿动物过氧化物酶体增殖中的作用外,PPAR还参与了啮齿动物和人类中贝特类药物和脂肪酸对高密度脂蛋白(HDL)胆固醇水平的调控。这种作用至少部分基于PPAR介导的对主要HDL载脂蛋白apo A-I和apo A-II的转录调控。贝特类药物和脂肪酸的降甘油三酯作用也涉及PPAR,可总结如下:(1)由于脂蛋白脂肪酶(LPL)和载脂蛋白C-III水平的变化,残余颗粒的脂解和清除增加;(2)通过诱导脂肪酸转运蛋白(FAT)、脂肪酸转运蛋白(FATP)和酰基辅酶A合成酶(ACS)的活性,刺激细胞对脂肪酸的摄取及其转化为酰基辅酶A衍生物;(3)诱导脂肪酸β氧化途径;(4)减少脂肪酸和甘油三酯的合成;最后(5)减少极低密度脂蛋白(VLDL)的产生。因此,富含甘油三酯颗粒的分解代谢增强以及VLDL颗粒分泌减少都是有助于贝特类药物和游离脂肪酸(FFA)降血脂作用的机制。虽然到目前为止尚未确定PPARβ的功能,但PPARγ通过诱导几个对脂肪生成至关重要的基因的表达来触发脂肪细胞分化。