Drews G
Institut für Biologie 2, Mikrobiologie, Albert-Ludwigs-Universität, Schanzlestrasse 1, D-79104 Freiburg, Germany.
Arch Microbiol. 1996 Sep;166(3):151-9. doi: 10.1007/s002030050370.
The light-harvesting (LH) complex I (B870) of anoxygenic photosynthetic purple bacteria is the oligomeric form of its subunit B820 consisting of the low-molecular-weight polypeptides alpha, beta, bacteriochlorophyll (BChl), and carotenoids in the stoichiometric ratio [alpha1 beta1 (BChl2) Crt1-2]n. LHI surrounds the photochemical reaction center (RC). The major absorption band of the LHI complex is species-specific and is found at 870-890 nm; those of the subunit and the monomeric BChl a (dissolved in methanol) absorb at 820 and 770 nm, respectively. The isolated LHI complex can be reversibly dissociated to the B820 subunit or to the polypeptides and pigments by addition of detergents. Reconstitution of the B820 or the functional B870 complex is still possible after partial truncation of the N- or C-terminal regions of the alpha- or beta-polypeptide or of the beta-polypeptide only. The minimal structural requirements for reconstitution of a spectrally wild-type form after truncation of the polypeptides and/or modifications of the BChl molecule are described. The insertion of the LHIalpha- and LHIbeta-polypeptides into the membrane and the in vivo assembly of LHI, studied in a cell-free system and in whole cells of Rhodobacter capsulatus, depend on the primary structures of both polypeptides, BChl, the chaperones DnaK and GroEL, membrane-bound proteins, and energized membranes. Exchanges, deletions, or insertions of amino acyl residues, especially in the conserved region of the N-terminus of the LHIalpha-polypeptide, prevent or reduce the efficiency and stability of the LHI assembly. Therefore, reconstitution of LHI in a detergent micelle does not exactly reproduce the formation of the LHI complex in the photosynthetic membrane in vivo. The N-terminal domains play a crucial role in the formation of the oligomeric protein scaffold and of the pigment array. Facultatively phototrophic bacteria such as Rhodospirillum (Rsp.) rubrum or Rhodobacter (Rba.) capsulatus can adjust to changes in oxygen tension, light intensity, temperature, and substrates to grow under chemotrophic or phototrophic conditions. The photosynthetic apparatus (PSA), localized mainly on intracytoplasmic membranes (ICM), is usually synthesized only under low oxygen partial pressure. The cellular amount and composition of the PSA are modified upon changing light intensity in relation to cell growth (Drews and Golecki 1995). The morphogenesis of cellular structures like ICM is quite different from self-assembly. Self-assembly is a reversible process of aggregation of the constituents of a complex structure without protein synthesis and is driven by weak or strong forces in the interactions of the constituents. Morphogenesis results from the interplay of numerous gene products and the cellular organization and is always dependent upon pre-existent structures (Harold 1995). The morphogenesis of the photosynthetic membrane in purple bacteria has been studied in its different steps. The regulation at the transcriptional and post-transcriptional levels in purple bacteria, and the structure and morphogenesis of the ICM have been described recently (Armstrong 1995; Bauer 1995; Biel 1995; Drews and Golecki 1995; Klug 1995). In this mini-review, I will focus on the minimal requirements for the in vitro assembly of light-harvesting (LH) complex I (B870) from its constituents in detergent micelles and compare the results with observations on the complex process of targeting and import of LHI polypeptides into the membrane and assembly of B870.
不产氧光合紫色细菌的捕光(LH)复合体I(B870)是其亚基B820的寡聚形式,由低分子量多肽α、β、细菌叶绿素(BChl)和类胡萝卜素按化学计量比[α1β1(BChl2)Crt1 - 2]n组成。LHI围绕着光化学反应中心(RC)。LHI复合体的主要吸收带具有物种特异性,位于870 - 890 nm;亚基和单体BChl a(溶解在甲醇中)的吸收带分别在820和770 nm。通过添加去污剂,分离出的LHI复合体可以可逆地解离为B820亚基或多肽和色素。在α - 或β - 多肽的N - 或C - 末端区域部分截短后,或仅对β - 多肽进行截短后,仍有可能重新构建B820或功能性B870复合体。本文描述了多肽截短和/或BChl分子修饰后重新构建光谱野生型形式的最小结构要求。在无细胞系统和荚膜红细菌的全细胞中研究了LHIα和LHIβ多肽插入膜以及LHI在体内的组装,这取决于两种多肽的一级结构、BChl、伴侣蛋白DnaK和GroEL、膜结合蛋白以及有能量的膜。氨基酰残基的交换、缺失或插入,特别是在LHIα多肽N - 末端保守区域,会阻止或降低LHI组装的效率和稳定性。因此,在去污剂胶束中重新构建LHI并不能完全重现LHI复合体在体内光合膜中的形成过程。N - 末端结构域在寡聚蛋白支架和色素阵列的形成中起关键作用。兼性光合细菌,如深红红螺菌(Rsp. rubrum)或荚膜红细菌(Rba. capsulatus),可以适应氧张力、光强度、温度和底物的变化,在化能营养或光合营养条件下生长。光合装置(PSA)主要定位于胞内膜(ICM)上,通常仅在低氧分压下合成。PSA的细胞数量和组成会随着与细胞生长相关的光强度变化而改变(德鲁斯和戈莱茨基,1995)。像ICM这样的细胞结构的形态发生与自组装有很大不同。自组装是一个在没有蛋白质合成的情况下,复杂结构成分聚集的可逆过程,由成分间弱或强的相互作用力驱动。形态发生是众多基因产物与细胞组织相互作用的结果,并且总是依赖于预先存在的结构(哈罗德,1995)。紫色细菌光合膜的形态发生已经在其不同步骤中进行了研究。最近已经描述了紫色细菌在转录和转录后水平的调控以及ICM的结构和形态发生(阿姆斯特朗,1995;鲍尔,1995;比尔,1995;德鲁斯和戈莱茨基,1995;克卢格,1995)。在这篇小型综述中,我将重点关注在去污剂胶束中由其成分体外组装捕光(LH)复合体I(B870)的最小要求,并将结果与关于LHI多肽靶向和导入膜以及B870组装的复杂过程的观察结果进行比较。