Suppr超能文献

折叠识别的进展。

Progress in fold recognition.

作者信息

Flöckner H, Braxenthaler M, Lackner P, Jaritz M, Ortner M, Sippl M J

机构信息

Center for Applied Molecular Engineering, University of Salzburg, Austria.

出版信息

Proteins. 1995 Nov;23(3):376-86. doi: 10.1002/prot.340230311.

Abstract

The prediction experiment reveals that fold recognition has become a powerful tool in structural biology. We applied our fold recognition technique to 13 target sequences. In two cases, replication terminating protein and prosequence of subtilisin, the predicted structures are very similar to the experimentally determined folds. For the first time, in a public blind test, the unknown structures of proteins have been predicted ahead of experiment to an accuracy approaching molecular detail. In two other cases the approximate folds have been predicted correctly. According to the assessors there were 12 recognizable folds among the target proteins. In our postprediction analysis we find that in 7 cases our fold recognition technique is successful. In several of the remaining cases the predicted folds have interesting features in common with the experimental results. We present our procedure, discuss the results, and comment on several fundamental and technical problems encountered in fold recognition.

摘要

预测实验表明,折叠识别已成为结构生物学中的一种强大工具。我们将折叠识别技术应用于13个目标序列。在两种情况下,即复制终止蛋白和枯草杆菌蛋白酶的前序列,预测结构与实验确定的折叠非常相似。在一次公开的盲测中,蛋白质的未知结构首次在实验之前就被预测出来,其准确性接近分子细节。在另外两种情况下,近似折叠也被正确预测。据评估人员称,目标蛋白中有12种可识别的折叠。在我们的预测后分析中,我们发现有7种情况我们的折叠识别技术是成功的。在其余的一些情况下,预测的折叠与实验结果有一些有趣的共同特征。我们展示了我们的方法,讨论了结果,并对折叠识别中遇到的几个基本和技术问题进行了评论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验