Jaworska J S, Hallam T G, Schultz T W
Graduate Program in Environmental Toxicology, University of Tennessee, Knoxville, USA.
Bull Math Biol. 1996 Mar;58(2):265-83. doi: 10.1007/BF02458309.
Premised on relatively simple assumptions, mathematical models like those of Monod, Pirt or Droop inadequately explain the complex transient behavior of microbial populations. In particular, these models fail to explain many aspects of the dynamics of a Tetrahymena pyriformis-Escherichia coli community. In this study an alternative approach, an individual-based model, is employed to investigate the growth and interactions of Tetrahymena pyriformis and E. coli in a batch culture. Due to improved representation of physiological processes, the model provides a better agreement with experimental data of bacterial density and ciliate biomass than previous modeling studies. It predicts a much larger coexistence domain than rudimentary models, dependence of biomass dynamics on initial conditions (bacteria to ciliate biomasses ratio) and appropriate timing of minimal bacteria density. Moreover, it is found that accumulation of E. coli sized particles and E. coli toxic metabolites has a stabilizing effect on the system.
基于相对简单的假设,像莫诺德(Monod)、皮尔特(Pirt)或德鲁普(Droop)等人提出的数学模型无法充分解释微生物种群复杂的瞬态行为。特别是,这些模型未能解释梨形四膜虫 - 大肠杆菌群落动态的许多方面。在本研究中,采用了另一种方法,即基于个体的模型,来研究梨形四膜虫和大肠杆菌在分批培养中的生长及相互作用。由于对生理过程的表述有所改进,该模型与细菌密度和纤毛虫生物量的实验数据相比,比之前的建模研究具有更好的一致性。它预测的共存域比基础模型大得多,生物量动态依赖于初始条件(细菌与纤毛虫生物量之比)以及最小细菌密度的合适时间。此外,还发现大肠杆菌大小的颗粒和大肠杆菌有毒代谢产物的积累对系统具有稳定作用。