Allende M L, Panzetta P
Centro de Investigaciones en Química Biológica de Córdoba. CIQUIBIC, UNC-CONICET, Department de Química Biológica, Faculted de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
Brain Res Dev Brain Res. 1995 Dec 21;90(1-2):102-10. doi: 10.1016/0165-3806(96)83490-0.
Ganglioside expression of embryonic chick retina cells developed in vitro was analyzed by indirect immunofluorescence. Immature neurons were GD3 positive cells and the labeling was chiefly distributed all over their cell membrane. Mature neurons became GD3 negative and expressed complex gangliosides of the a- and b-pathways; nevertheless, the content of GD3 accounted for approximately 40% of the total gangliosides in these cells. Neuraminidase hydrolysis pointed out that GD3 was located in membrane of differentiated cells. The frequency of cells with the GD3 immunostain localized in restricted area of membrane of undifferentiated neurons increased significantly after adding a mixture of bovine brain gangliosides (largely complex gangliosides). Antibody binding to immobilized GD3 showed a dose-dependent inhibition by adding a mixture of bovine brain gangliosides, GM1, GD1a or asialo-GM1. Glycosphingolipids with shorter oligosaccharide chains, as cerebrosides or sulfatides, did not affect this binding. These results suggest that, concomitant with the accretion of content of complex gangliosides, a rearrangement in the membrane would occur, which progressively masks GD3 to its antibody. This rearrangement might affect putative ganglioside functions involved in neuronal differentiation.