Kraal B, Zeef L A, Mesters J R, Boon K, Vorstenbosch E L, Bosch L, Anborgh P H, Parmeggiani A, Hilgenfeld R
Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, The Netherlands.
Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1167-77. doi: 10.1139/o95-126.
Analysis of antibiotic-resistant EF-Tu mutants has revealed a connection between resistance and structural elements that participate in the GTPase switching mechanism. Both random and site-directed mutagenesis methods have yielded sets of purified mutant EF-Tu resistant to kirromycin (kirT) or pulvomycin (pulT). All kirT mutations cluster in the interface of domain 1 and 3 of EF-Tu in its GTP-bound conformation, not in that of EF-Tu.GDP. Other evidence also suggests that kirromycin binds to the interface of wild-type EF-Tu, thereby jamming the GTPase switch. Various functional studies reveal two subsequent resistance mechanisms. The first hinders kirromycin binding to EF-Tu.GTP and the second occurs after GTP hydrolysis by rejection of bound kirromycin. All pulT mutations cluster in the three-domain junction interface of EF-Tu. GTP (which is an open hole in EF-Tu.GDP) and destabilize a salt-bridge network. Pulvomycin may bind nearby and overlap with tRNA binding. Mutations show that a D99-R230 salt bridge is not essential for the transduction of the GTPase switch signal from domain 1. In vivo and in vitro studies reveal that pulvomycin sensitivity is dominant over resistance. This demands a revision of the current view of the mechanism of pulvomycin inhibition of protein synthesis and may support a translation model with two EF-Tus on the ribosome. Several mutant EF-Tu species display altered behaviour towards aminoacyl-tRNA with interesting effects on translational accuracy. KirT EF-Tu(A375T) is able to reverse the streptomycin-dependent phenotype of a ribosomal protein S12 mutant strain to streptomycin sensitivity.
对抗生素耐药性的EF-Tu突变体的分析揭示了耐药性与参与GTPase转换机制的结构元件之间的联系。随机诱变和定点诱变方法都产生了对奇霉素(kirT)或普尔霉素(pulT)耐药的纯化突变体EF-Tu。所有kirT突变都聚集在GTP结合构象的EF-Tu结构域1和3的界面处,而不是EF-Tu.GDP的界面处。其他证据也表明奇霉素与野生型EF-Tu的界面结合,从而干扰GTPase开关。各种功能研究揭示了两种后续的耐药机制。第一种机制阻碍奇霉素与EF-Tu.GTP结合,第二种机制发生在GTP水解后,通过排斥结合的奇霉素来实现。所有pulT突变都聚集在EF-Tu的三结构域连接界面处。GTP(在EF-Tu.GDP中是一个开放孔)并破坏盐桥网络的稳定性。普尔霉素可能在附近结合并与tRNA结合重叠。突变表明D99-R230盐桥对于从结构域1转导GTPase开关信号不是必需的。体内和体外研究表明,普尔霉素敏感性比耐药性占主导。这需要对目前关于普尔霉素抑制蛋白质合成机制的观点进行修正,并可能支持核糖体上有两个EF-Tu的翻译模型。几种突变体EF-Tu物种对氨酰-tRNA表现出改变的行为,对翻译准确性有有趣的影响。KirT EF-Tu(A375T)能够将核糖体蛋白S12突变菌株的链霉素依赖性表型逆转至链霉素敏感性。