Bagramian K A, Trchunian A A
Biofizika. 1996 Mar-Apr;41(2):369-76.
It is shown that -2H+/K(+)-exchange through the H(+)-K(+)-pump, formed by the F0F1-ATPase and the Trk H system, H(+)-K(+)-exchange via H(+)-K(+)-antiporter, formed by the F0 and the Trk G (core) system [1-2], and production of H2 in anaerobically grown E.coli are changed in the mutants with defects in components of formate hydrogen lyase complex, oxidizing formate to CO2 and H2. 2H+/K(+)-exchange and H2 production are destroyed, but H(+)-K(+)-exchange with a variable stoichiometry for N,N'-dicyclohexyl-carbodiimide-sensitive ion fluxes is displayed in the fdhF mutant E.coli FM911, where formate dehydrogenase(H) is absent. 2H+/K(+)-exchange does not occur, but H(+)-K(+)-exchange with variable stoichiometry for N,N'-dicyclohexylcarbodiimide-sensitive ion fluxes and H2 production are observed in the uncD mutant E.coli AN817 with defect in beta subunit of the F1. Deletion of the hyc-operon in mutant E.coli HD700, led to absence of hydrogenase 3, destroys H(+)-K(+)-exchange and H2 production. H2 evaluation is shown in the E.coli K12(lambda) protoplasts, treated with toluene, by adding of NADH into the medium, containing ATP and K+. It is inhibited by N,N'-dicyclohexylcarbodiimide. H2 production is increased by adding of dithiothreitol, when NADH is changed by formate. It is lost in the mutants with defects in the F0 (E.coli AN936) or in the Trk A protein (E.coli TK2242). Dehydrogenase(H) and hydrogenase 3 are assumed to link mutually with a H(+)-K(+)-pump operation, reducing equivalents, necessary for a dithiol-disulfide interconversion within a mechanism of pump, are transferred from formate by means of dehydrogenase(H) to hydrogenase 3 through the F0F1 and the Trk H system to produce H2. It is assumed that hydrogenase 3 can interact with a mechanism of H(+)-K(+)-antiporter, NADH could serve as a donor of reducing equivalents. A role of thiol-groups and dithiol-disulfide interconversion in a functions of both mechanism for H(+)-K(+)-exchange is confirmed.
结果表明,通过由F0F1 - ATP酶和Trk H系统形成的H(+)-K(+)泵进行的-2H+/K(+)交换、通过由F0和Trk G(核心)系统形成的H(+)-K(+)反向转运体进行的H(+)-K(+)交换[1 - 2],以及厌氧生长的大肠杆菌中H2的产生,在甲酸氢裂解酶复合体组分有缺陷的突变体中发生了变化,该复合体可将甲酸氧化为CO2和H2。在缺乏甲酸脱氢酶(H)的fdhF突变体大肠杆菌FM911中,2H+/K(+)交换和H2产生被破坏,但对于N,N'-二环己基碳二亚胺敏感的离子通量,显示出具有可变化学计量的H(+)-K(+)交换。在F1的β亚基有缺陷的uncD突变体大肠杆菌AN817中,不发生2H+/K(+)交换,但观察到对于N,N'-二环己基碳二亚胺敏感的离子通量具有可变化学计量的H(+)-K(+)交换和H2产生。在突变体大肠杆菌HD700中删除hyc操纵子导致氢化酶3缺失,破坏了H(+)-K(+)交换和H2产生。在经甲苯处理的大肠杆菌K12(λ)原生质体中,通过向含有ATP和K+的培养基中添加NADH来显示H2的评估。它受到N,N'-二环己基碳二亚胺的抑制。当NADH被甲酸替代时,通过添加二硫苏糖醇可增加H2的产生。在F0有缺陷的突变体(大肠杆菌AN936)或Trk A蛋白有缺陷的突变体(大肠杆菌TK2242)中,H2产生消失。假定脱氢酶(H)和氢化酶3与H(+)-K(+)泵的运作相互关联,泵机制内二硫醇 - 二硫化物相互转化所需的还原当量通过脱氢酶(H)从甲酸转移至氢化酶3,再通过F0F1和Trk H系统产生H2。假定氢化酶3可与H(+)-K(+)反向转运体的机制相互作用,NADH可作为还原当量的供体。巯基和二硫醇 - 二硫化物相互转化在两种H(+)-K(+)交换机制功能中的作用得到了证实。