Suppr超能文献

Presynaptic and postsynaptic subcellular localization of substance P receptor immunoreactivity in the neostriatum of the rat and rhesus monkey (Macaca mulatta).

作者信息

Jakab R L, Goldman-Rakic P

机构信息

Section of Neurobiology, Yale University, School of Medicine, New Haven, Connecticut 06510, USA.

出版信息

J Comp Neurol. 1996 May 20;369(1):125-36. doi: 10.1002/(SICI)1096-9861(19960520)369:1<125::AID-CNE9>3.0.CO;2-5.

Abstract

The substance P receptor (SPR) gene is expressed at high levels in basal ganglia, but the paucity of information about localization of the encoded receptor protein has limited our understanding of this peptide's involvement in cellular and subcellular mechanisms in this region. Morphological evidence in the rodent striatum indicates that SPRs are expressed in postsynaptic neuronal elements, while pharmacological studies suggest the existence of presynaptic SPRs in this structure. We have examined the issue of subcellular distribution of this receptor protein in rat and primate neostriatal tissue, employing an antiserum raised against SPR. Electron microscopic analysis revealed that SPR immunoreactivity is present in presynaptic and postsynaptic neuronal elements in both species. In agreement with earlier studies, SPR immunoreactivity was found predominantly in perikarya and dendrites of a small subset of striatal neurons, the large and medium-sized aspiny interneurons. In addition, a small but significant proportion of the immunoreaction product was localized in presynaptic profiles, both in axons and axon terminals. The majority of SPR immunoreactive boutons formed asymmetric synapses with dendrites and dendritic spines. The association of SPRs with asymmetric synapses provides a morphological substrate for peptidergic modulation of excitatory neurotransmission of extrastriatal origin. A minor proportion of immunolabeled axons established symmetric synaptic junctions with unlabeled dendrites. The presence of SPRs in these synapses suggests a presynaptic peptidergic modulation of intrinsic striatal transmitter systems. The observations in this study also indicate that SPR mediates a complex combination of postsynaptic and presynaptic effects on acetylcholine release in the mammalian striatum.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验