Colasante C, Pécot-Dechavassine M
Département de Neurobiologie des Signaux Intercellulaires (URA CNRS 1488), Université Pierre et Marie Curie, Paris, France.
J Neurosci Res. 1996 May 1;44(3):272-82. doi: 10.1002/(SICI)1097-4547(19960501)44:3<272::AID-JNR8>3.0.CO;2-D.
Synaptic vesicle recycling after intense acetylcholine (ACh) release was studied at the frog neuromuscular junction (NMJ) using the synaptic vesicle transmembrane protein synaptophysin as immunocytochemical marker of the synaptic vesicle membrane during the process of exo-endocytosis. ACh release in cutaneous pectoris nerve-muscle preparations was stimulated by three different means: K+, Cd2+ in Ca(2+)-free medium, and electrical stimulation in the presence of 4-aminopyridine (4-AP). Cd2+ stimulation produced synaptic vesicle depletion and nerve terminal swelling. Electrical stimulation in the presence of 4-AP produced a reduction in the number of synaptic vesicles, deep axolemmal infoldings, coated pits, and coated vesicles. K+ stimulation did not produce any observable ultrastructural changes. Synaptophysin was labeled using silver-intensified immunogold in dissociated muscle fibers. Unstimulated and K(+)-stimulated preparations showed synaptophysin immunolabeling associated only with synaptic vesicles. In contrast, in Cd(2+)-stimulated preparations, synaptophysin appeared along the axolemma, mainly at the active zones, and after electrical stimulation it appeared in both axolemmal infoldings and the remaining synaptic vesicles. The results show that when synaptic vesicle recycling is inhibited by Cd2+ in Ca(2+)-free medium, or when 4-AP is present during electrical stimulation, synaptic vesicle fusion is accompanied by translocation and incorporation of synaptic vesicle membrane proteins into the axolemma. However, during the latter condition, synaptic vesicles are recycled through coated vesicles arising from the axolemmal infoldings. Conversely, during physiological-like stimulation of ACh release by K+ the synaptic vesicles are rapidly recycled at the active zones, by a double and rapid process of exo-endocytosis, without collapse into the axolemma.
利用突触小泡跨膜蛋白突触素作为胞吐 - 胞吞过程中突触小泡膜的免疫细胞化学标记物,在青蛙神经肌肉接头(NMJ)处研究了强烈乙酰胆碱(ACh)释放后的突触小泡循环。通过三种不同方式刺激胸皮神经 - 肌肉标本中的ACh释放:K⁺、无钙培养基中的Cd²⁺以及在4 - 氨基吡啶(4 - AP)存在下进行电刺激。Cd²⁺刺激导致突触小泡耗竭和神经末梢肿胀。在4 - AP存在下进行电刺激导致突触小泡数量减少、轴膜深层褶皱、被膜小窝和被膜小泡。K⁺刺激未产生任何可观察到的超微结构变化。在解离的肌纤维中使用银增强免疫金标记突触素。未刺激和K⁺刺激的标本显示突触素免疫标记仅与突触小泡相关。相比之下,在Cd²⁺刺激的标本中,突触素出现在轴膜上,主要在活性区,电刺激后它出现在轴膜褶皱和剩余的突触小泡中。结果表明,当在无钙培养基中用Cd²⁺抑制突触小泡循环时,或在电刺激期间存在4 - AP时,突触小泡融合伴随着突触小泡膜蛋白向轴膜的转运和掺入。然而,在后一种情况下,突触小泡通过轴膜褶皱产生的被膜小泡进行循环。相反,在类似生理状态下由K⁺刺激ACh释放时,突触小泡在活性区通过快速的双相胞吐 - 胞吞过程迅速循环,而不会塌陷到轴膜中。