Suppr超能文献

Quantification of white matter and gray matter volumes from T1 parametric images using fuzzy classifiers.

作者信息

Herndon R C, Lancaster J L, Toga A W, Fox P T

机构信息

Department of Radiology and Research Imaging Center, University of Texas Health Science Center at San Antonio, USA.

出版信息

J Magn Reson Imaging. 1996 May-Jun;6(3):425-35. doi: 10.1002/jmri.1880060303.

Abstract

White matter (WM) and gray matter (GM) were accurately measured using a technique based on a single standardized fuzzy classifier (FC) for each tissue. Fuzzy classifier development was based on experts' visual assessments of WM and GM boundaries from a set of T1 parametric MR images. The fuzzy classifier method's accuracy was validated and optimized by a set of T1 phantom images that were based on hand-detailed human brain cryosection images. Nine sets of axial T1 images of varying thickness equally distributed throughout the brain were simulated. All T1 data sets were mapped to the standardized FCs and rapidly segmented into WM and GM voxel fraction images. Resulting volumes revealed that, in most cases, the difference between measured and actual volumes was less than 5%. This was consistent throughout most of the brain, and as expected, the accuracy improved to generally less than 2% for the 1-mm simulated brain slices.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验