Suppr超能文献

预测溶剂可及性:使用贝叶斯统计和优化的残基替代类别提高准确性。

Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes.

作者信息

Thompson M J, Goldstein R A

机构信息

Biophysics Research Division, University of Michigan, Ann Arbor 48109-1055, USA.

出版信息

Proteins. 1996 May;25(1):38-47. doi: 10.1002/(SICI)1097-0134(199605)25:1<38::AID-PROT4>3.0.CO;2-G.

Abstract

We introduce a novel Bayesian probabilistic method for predicting the solvent accessibilities of amino acid residues in globular proteins. Using single sequence data, this method achieves prediction accuracies higher than previously published methods. Substantially improved predictions-comparable to the highest accuracies reported in the literature to date-are obtained by representing alignments of the example proteins and their homologs as strings of residue substitution classes, depending on the side chain types observed at each alignment position. These results demonstrate the applicability of this relatively simple Bayesian approach to structure prediction and illustrate the utility of the classification methodology previously developed to extract information from aligned sets of structurally related proteins.

摘要

我们介绍了一种新颖的贝叶斯概率方法,用于预测球状蛋白质中氨基酸残基的溶剂可及性。使用单序列数据,该方法实现了比先前发表的方法更高的预测准确率。通过将示例蛋白质及其同源物的比对表示为残基替代类别的字符串,根据在每个比对位置观察到的侧链类型,可获得显著改进的预测结果——与迄今为止文献中报道的最高准确率相当。这些结果证明了这种相对简单的贝叶斯方法在结构预测中的适用性,并说明了先前开发的分类方法从结构相关蛋白质的比对集中提取信息的效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验