Wikinski S I, Acosta G B
Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires, Argentina.
Medicina (B Aires). 1995;55(4):355-65.
Excitatory amino acids (EAA) became known as neurotransmitters of the central nervous system (CNS) in the last decade. The most studied EAA are glutamate and aspartate. Both are synthetized by the same mechanism as gamaaminobutyric acid. (Fig. 1). Glutamate is widely distributed in the CNS and the spinal cord, being the areas of higher concentration the cerebral cortex, the hypocampus and the cerebellum. There have been identified two type of receptors for glutamate: ionotropic and metabotropic. The former includes three different types: NMDA, AMPA and KA. NMDA receptor is coupled to a Na+ and Ca2+ channel being the second ion the most important one. This receptor has several sites of binding for various substances. Along with the site for N-methyl-D-aspartate, which binds glutamate and/or aspartate, there have been identified a site for the binding of glycine (which is different from the strychnine sensitive one), a site for poliamines such as spermine and spermidine, and a site for the binding of Zn2+ (Table 1). AMPA receptor is associated to a Ca(2+)-Na+ channel, being in this case the Na+ the most important ion. There are two metabotropic type receptors: L-AP4 and trans-ACPD. Both are coupled to a G protein and agonists exert their action increasing phospholipase C activity which in turn induces an increment of IP3 and diacyl-glicerol, and a consecutive releasing of Ca2+ from intracellular stores. EAA play a role in some physiological processes. One of them is long-term potentiation (LTP), an electrochemical phenomenon involved in memory consolidation. Antagonists of NMDA and AMPA receptor prevent the development of LTP, and conversely, the agonist of glycine site of NMDA receptor--D-cycloserine--facilitates memory consolidation. Since 1957, EAA are considered neurotoxic substances and there are many indirect evidences to support this statement. Pathogenesis of neuronal damage elicited by EAA involves the events shown in Fig. 3. Prevention of the cascade of events that provokes neurotoxicity may be achieved by NMDA antagonists, but once it has begun it may be only aborted subtracting the Ca2+ from the medium, using nifedipine or blocking AMPA receptor with an antagonist (CNQX). EAA have been shown to play a toxic role in neuronal damage induced by ischemia. Research using various experimental models demonstrated that NMDA receptor antagonists (i.e. MK 801) blocks postischemic damage. Interventions at various levels of the pathogenic cascade shown in Fig. 4 provoke the same results. There is enough evidence to suspect that NMDA and AMPA receptors are altered in epilepsy. NMDA antagonists (i.e. MK801 or AP5) prevent the development of epileptic seizures induced by kindling; CNQX, an AMPA antagonist, blocks the increase in electrical activity induced by K+ in slices of hypocampus; felbamate, an antiepileptic drug, blocks the glycine site (not strychnine sensitive) decreasing NMDA receptor activity. Several neurodegenerative disorders have been associated with exogenous administration or accidental intake of EAA. (i.e. neurolatirism, Guam disease). Similarities between these diseases and lateral aminotrophic sclerosis indicate that in the latter EAA may play a pathogenic role. Finally, the psychotomimetic effect of phencyclidine (an antagonist of NMDA receptor) suggests that in schizophrenia, together with dopaminergic neurotransmission impairment, some dysfunction of glutamate pathways may be present.
兴奋性氨基酸(EAA)在过去十年中成为中枢神经系统(CNS)的神经递质。研究最多的EAA是谷氨酸和天冬氨酸。两者都通过与γ-氨基丁酸相同的机制合成(图1)。谷氨酸广泛分布于中枢神经系统和脊髓中,浓度较高的区域是大脑皮层、海马体和小脑。已确定谷氨酸有两种类型的受体:离子型和代谢型。前者包括三种不同类型:N-甲基-D-天冬氨酸受体(NMDA)、α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPA)和海人藻酸受体(KA)。NMDA受体与一个钠离子和钙离子通道偶联,钙离子是第二种最重要的离子。该受体有多个与各种物质结合的位点。除了与谷氨酸和/或天冬氨酸结合的N-甲基-D-天冬氨酸位点外,还确定了一个甘氨酸结合位点(与士的宁敏感位点不同)、一个多胺如精胺和亚精胺的结合位点以及一个锌离子结合位点(表1)。AMPA受体与一个钙离子-钠离子通道相关联,在这种情况下钠离子是最重要的离子。有两种代谢型受体:L-2-氨基-4-膦酸丁酸(L-AP4)和反式-1-氨基环丙烷-1,3-二羧酸(trans-ACPD)。两者都与G蛋白偶联,激动剂通过增加磷脂酶C的活性发挥作用,这反过来又诱导三磷酸肌醇(IP3)和二酰甘油的增加,并随后从细胞内储存中释放钙离子。EAA在一些生理过程中起作用。其中之一是长时程增强(LTP),这是一种参与记忆巩固的电化学现象。NMDA和AMPA受体拮抗剂可阻止LTP的发展,相反,NMDA受体甘氨酸位点的激动剂——D-环丝氨酸——促进记忆巩固。自1957年以来,EAA被认为是神经毒性物质,有许多间接证据支持这一说法。EAA引起的神经元损伤的发病机制涉及图3所示的事件。使用NMDA拮抗剂可预防引发神经毒性的一系列事件,但一旦开始,可能只能通过使用硝苯地平从培养基中去除钙离子或用拮抗剂(CNQX)阻断AMPA受体来中止。EAA已被证明在缺血诱导的神经元损伤中起毒性作用。使用各种实验模型的研究表明,NMDA受体拮抗剂(即MK 801)可阻断缺血后损伤。对图4所示致病级联反应不同水平的干预会产生相同的结果。有足够的证据怀疑NMDA和AMPA受体在癫痫中发生改变。NMDA拮抗剂(即MK801或AP5)可预防点燃诱导的癫痫发作的发展;AMPA拮抗剂CNQX可阻断海马体切片中钾离子诱导的电活动增加;抗癫痫药物非氨酯可阻断甘氨酸位点(非士的宁敏感),降低NMDA受体活性。几种神经退行性疾病与外源性给予或意外摄入EAA有关(即神经病性梅毒、关岛病)。这些疾病与肌萎缩侧索硬化症之间的相似性表明,在后者中EAA可能起致病作用。最后,苯环己哌啶(一种NMDA受体拮抗剂)的拟精神病效应表明,在精神分裂症中,除了多巴胺能神经传递受损外,谷氨酸途径可能也存在一些功能障碍。