Suppr超能文献

人体血液的非牛顿粘度:流动诱导的微观结构变化

Non-Newtonian viscosity of human blood: flow-induced changes in microstructure.

作者信息

Thurston G B

机构信息

Department of Mechanical Engineering, University of Texas at Austin 78712, USA.

出版信息

Biorheology. 1994 Mar-Apr;31(2):179-92. doi: 10.3233/bir-1994-31206.

Abstract

Flow-induced changes in the red cell microstructure of human blood are identified from mechanical and optical evidence. On initiation of steady flow, a new microstructure develops as the shear strain increases through unit strain. This structure is identified with the formation of layers of red cells that slide on plasma layers (Thurston, 1989). At low shear rates, the cell layers are composed of aggregated cells, but at higher shear rates, the aggregates degrade to form thinner layers of oriented, compacted cells. The viscosity is determined by the hematocrit, the degree of compaction and viscosity within the cell layers, and the plasma viscosity. Degradation of cell aggregates is controlled by 1) the time required for the strain to increase by one unit (delta t1 = 1/shear rate) and 2) the dominant viscoelastic relaxation times of the red cell structures. Structures having relaxation times > delta t1 are degraded by cell disaggregation; when delta t1 is less than the shortest relaxation time of the layered cells, disaggregation and (cell and plasma) layer formation are nearly complete. Analyses of the non-Newtonian viscosity and cell layer characteristics are given for both normal and hardened cells.

摘要

通过力学和光学证据确定了流动引起的人体血液红细胞微观结构变化。在稳定流动开始时,随着剪切应变通过单位应变增加,会形成一种新的微观结构。这种结构与红细胞层在血浆层上滑动的形成有关(瑟斯顿,1989年)。在低剪切速率下,细胞层由聚集的细胞组成,但在较高剪切速率下,聚集体会降解形成更薄的定向紧密细胞层。粘度由血细胞比容、细胞层内的压实程度和粘度以及血浆粘度决定。细胞聚集体的降解受以下因素控制:1)应变增加一个单位所需的时间(δt1 = 1/剪切速率)和2)红细胞结构的主要粘弹性弛豫时间。弛豫时间>δt1的结构会因细胞解聚而降解;当δt1小于分层细胞的最短弛豫时间时,解聚和(细胞和血浆)层形成几乎完成。给出了正常细胞和硬化细胞的非牛顿粘度和细胞层特征分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验