Deligianni D D, Missirlis Y F, Kafka V
Department of Mechanical Engineering, University of Patras, Rion, Greece.
Biorheology. 1994 May-Jun;31(3):245-57. doi: 10.3233/bir-1994-31303.
A statistical mathematical model is used to describe the viscoelastic behavior of trabecular bone from the description of its microstructure. Trabecular bone is regarded as an orthotropic composite material consisting of two phases: The trabeculae, modelled as a non-linear elastic material, and the marrow, modelled as a Maxwell element. The macroscopic constitutive equation contains, as parameters, the constants of the material phases' constitutive equations, the respective volume fractions and parameters descriptive of the geometry of trabecular bone. With this model, the contribution of the marrow to the mechanical behavior of trabecular bone is determined and it is calculated that, under a step load and at strain rate, 10 min-1, the marrow can bear about 25% of the applied load. The constants of the material phases are also calculated from a series of stress-relaxation curves on trabecular bone specimens. It is concluded that the trabeculae display non-linear elastic behavior.
通过对小梁骨微观结构的描述,使用统计数学模型来描述其粘弹性行为。小梁骨被视为一种由两相组成的正交各向异性复合材料:小梁,被建模为非线性弹性材料;骨髓,被建模为麦克斯韦元件。宏观本构方程包含材料相本构方程的常数、各自的体积分数以及描述小梁骨几何形状的参数作为参数。利用该模型,确定了骨髓对小梁骨力学行为的贡献,并计算出在阶跃载荷和应变速率为10 min⁻¹的情况下,骨髓可承受约25%的外加负荷。材料相的常数也从小梁骨标本的一系列应力松弛曲线中计算得出。得出的结论是小梁表现出非线性弹性行为。