Wang W, Husan F, Chow S C
Scott-Levin Associates, Inc., Newtown, PA 18940, USA.
Stat Med. 1996 Mar 30;15(6):659-69. doi: 10.1002/(SICI)1097-0258(19960330)15:6<659::AID-SIM207>3.0.CO;2-E.
Physicians commonly prescribe drugs in a multiple dosage regimen for prolonged therapeutic activity. To study the effect of multiple dosing on drug concentration in blood, researchers often use deterministic models with the assumption that drugs are administered at a fixed dosage, with equal or unequal (fixed) dosing intervals. In practice, many patients do not comply with such a rigid schedule. Hence, two possible scenarios might occur: patients might not take the prescribed dosing amount, resulting in erratic dosing sizes; they might not adhere to the dosing schedule, resulting in erratic dosing times. We propose separate statistical models for these two scenarios and study their impact on blood serum/plasma concentration. With non-compliance, some basic concepts such as steady state need new definition. We provide a rigorous formulation for the principle of superposition which enables us to generalize the concept of steady state. Applying the proposed models, we demonstrate that non-compliance causes the drug concentration time curve to exhibit an increase in fluctuation. The increase in fluctuation due to non-compliance cannot be explained with use of the classical deterministic multiple dose model.
医生通常采用多剂量给药方案来实现延长治疗活性的目的。为了研究多剂量给药对血液中药物浓度的影响,研究人员经常使用确定性模型,并假设药物以固定剂量给药,给药间隔相等或不等(固定)。在实际中,许多患者并不遵循如此严格的给药时间表。因此,可能会出现两种情况:患者可能未服用规定的给药量,导致给药量不稳定;他们可能未遵守给药时间表,导致给药时间不稳定。我们针对这两种情况提出了单独的统计模型,并研究它们对血清/血浆浓度的影响。在存在不依从性的情况下,一些基本概念(如稳态)需要重新定义。我们为叠加原理提供了一个严格的公式,这使我们能够推广稳态的概念。应用所提出的模型,我们证明不依从性会导致药物浓度时间曲线的波动增加。由于不依从性导致的波动增加无法用经典的确定性多剂量模型来解释。