Suppr超能文献

调控十二聚体谷氨酰胺合成酶的聚集特性:单个氨基酸取代可控制“盐析”。

Engineering the aggregation properties of dodecameric glutamine synthetase: a single amino acid substitution controls 'salting out'.

作者信息

Dabrowski M J, Dietze E C, Atkins W M

机构信息

University of Washington, Medicinal Chemistry, Seattle 98195-7610, USA.

出版信息

Protein Eng. 1996 Mar;9(3):291-8. doi: 10.1093/protein/9.3.291.

Abstract

Escherichia coli glutamine synthetase (GS) is a dodecamer of identical subunits which are arranged as two face-to-face hexameric rings. In the presence of 10% ammonium sulfate, wild type GS exhibits a pH-dependent "salting out' with a pKa of 4.51. Electron micrographs indicate that the pH-dependent aggregation corresponds to a highly specific self-assembly of GS tubules, which result from stacking of individual dodecamers. This stacking of dodecamers is similar to the metal ion-induced GS tubule formation previously described. Site-directed mutagenesis experiments indicate that the N-terminal helix of each subunit is involved in the salting out reaction, as it is in the metal-induced stacking. A single substitution of alanine for His4 completely abolishes the (NH4)2SO4-induced aggregation. However, the H4C mutant protein does nearly completely precipitate under the same salting out conditions. Mutations at other residues within the helix have no effect on the stacking reaction. Differential catalytic activity of unadenylylated GS versus adenylylated GS has been used to determine whether wild type dodecamers "complement' the H4A mutant in the stacking reaction. The complementation experiments indicate that His4 residues on both sides of the dodecamer-dodecamer interfaces are not absolutely required for salting out, although the wild type dodecamers clearly stack preferentially with other wild type dodecamers. Approximately 20% of the protein precipitated from the mixtures containing the wild type GS and the H4A mutant is the mutant. The implications of these results for protein engineering are discussed.

摘要

大肠杆菌谷氨酰胺合成酶(GS)是由相同亚基组成的十二聚体,这些亚基排列成两个面对面的六聚体环。在10%硫酸铵存在的情况下,野生型GS表现出pH依赖性的“盐析”现象,其pKa为4.51。电子显微镜照片表明,pH依赖性聚集对应于GS微管的高度特异性自组装,这是由单个十二聚体的堆叠导致的。这种十二聚体的堆叠类似于先前描述的金属离子诱导的GS微管形成。定点诱变实验表明,每个亚基的N端螺旋参与盐析反应,就像在金属诱导的堆叠中一样。将组氨酸4位点单个替换为丙氨酸会完全消除(NH4)2SO4诱导的聚集。然而,H4C突变蛋白在相同的盐析条件下几乎完全沉淀。螺旋内其他残基的突变对堆叠反应没有影响。未腺苷酸化的GS与腺苷酸化的GS的催化活性差异已被用于确定野生型十二聚体在堆叠反应中是否“互补”H4A突变体。互补实验表明,十二聚体-十二聚体界面两侧的组氨酸4残基对于盐析不是绝对必需的,尽管野生型十二聚体显然优先与其他野生型十二聚体堆叠。从含有野生型GS和H4A突变体的混合物中沉淀出的蛋白质中,约20%是突变体。讨论了这些结果对蛋白质工程的意义。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验