Koepke J, Hu X, Muenke C, Schulten K, Michel H
Max-Planck-Institut für Biochemie, Abteilung Molekulare Membranbiologie, Frankfurt, Germany.
Structure. 1996 May 15;4(5):581-97. doi: 10.1016/s0969-2126(96)00063-9.
The light-harvesting complexes II (LH-2s) are integral membrane proteins that form ring-like structures, oligomers of alpha beta-heterodimers, in the photosynthetic membranes of purple bacteria. They contain a large number of chromophores organized optimally for light absorption and rapid light energy migration. Recently, the structure of the nonameric LH-2 of Rhodopseudomonas acidophila has been determined; we report here the crystal structure of the octameric LH-2 from Rhodospirillum molischianum. The unveiling of similarities and differences in the architecture of these proteins may provide valuable insight into the efficient energy transfer mechanisms of bacterial photosynthesis.
The crystal structure of LH-2 from Rs. molischianum has been determined by molecular replacement at 2.4 A resolution using X-ray diffraction. The crystal structure displays two concentric cylinders of sixteen membrane-spanning helical subunits, containing two rings of bacteriochlorophyll-a (BChl-a) molecules. One ring comprises sixteen B850 BChl-as perpendicular to the membrane plane and the other eight B800 BChl-as that are nearly parallel to the membrane plane; eight membrane-spanning lycopenes (the major carotenoid in this complex) stretch out between the B800 and B850 BChl-as. The B800 BChl-as exhibit a different ligation from that of Rps. acidophila (aspartate is the Mg ligand as opposed to formyl-methionine in Rps. acidophila).
The light-harvesting complexes from different bacteria assume various ring sizes. In LH-2 of Rs. molischianum, the Qy transition dipole moments of neighbouring B850 and B800 BChl-as are nearly parallel to each other, that is, they are optimally aligned for Föster exciton transfer. Dexter energy transfer between these chlorophylls is also possible through interactions mediated by lycopenes and B850 BChl-a phytyl tails; the B800 BChl-a and one of the two B850 BChl-as associated with each heterodimeric unit are in van der Waals distance to a lycopene, such that singlet and triplet energy transfer between lycopene and the BChl-as can occur by the Dexter mechanism. The ring structure of the B850 BChl-as is optimal for light energy transfer in that it samples all spatial absorption and emission characteristics and places all oscillator strength into energetically low lying, thermally accessible exciton states.
捕光复合物II(LH - 2s)是整合膜蛋白,在紫色细菌的光合膜中形成环状结构,即αβ - 异二聚体的寡聚体。它们含有大量为光吸收和快速光能迁移而优化组织的发色团。最近,嗜酸红假单胞菌的九聚体LH - 2的结构已被确定;我们在此报告摩氏红螺菌八聚体LH - 2的晶体结构。揭示这些蛋白质结构中的异同可能为细菌光合作用的高效能量转移机制提供有价值的见解。
利用X射线衍射通过分子置换法在2.4埃分辨率下确定了摩氏红螺菌LH - 2的晶体结构。晶体结构显示出由十六个跨膜螺旋亚基组成的两个同心圆柱,包含两环细菌叶绿素 - a(BChl - a)分子。一个环由十六个垂直于膜平面的B850 BChl - a组成,另一个环由八个几乎平行于膜平面的B800 BChl - a组成;八个跨膜番茄红素(该复合物中的主要类胡萝卜素)在B800和B850 BChl - a之间伸展。B800 BChl - a表现出与嗜酸红假单胞菌不同的配体结合(在嗜酸红假单胞菌中Mg配体是天冬氨酸,而不是甲酰甲硫氨酸)。
来自不同细菌的捕光复合物呈现出各种环大小。在摩氏红螺菌的LH - 2中,相邻的B850和B800 BChl - a的Qy跃迁偶极矩几乎彼此平行,也就是说,它们为Förster激子转移进行了最佳排列。这些叶绿素之间的Dexter能量转移也可能通过番茄红素和B850 BChl - a植醇尾巴介导的相互作用发生;与每个异二聚体单元相关的B800 BChl - a和两个B850 BChl - a之一与一个番茄红素处于范德华距离,使得番茄红素和BChl - a之间的单重态和三重态能量转移可以通过Dexter机制发生。B850 BChl - a的环结构对于光能转移是最佳的,因为它采样了所有空间吸收和发射特性,并将所有振子强度置于能量较低、热可及的激子态。