Jovine L, Oubridge C, Avis J M, Nagai K
MRC Laboratory of Molecular Biology, Cambridge, UK.
Structure. 1996 May 15;4(5):621-31. doi: 10.1016/s0969-2126(96)00066-4.
Human U1A protein binds to hairpin II of U1 small nuclear RNA (snRNA) and, together with other proteins, forms the U1 snRNP essential in pre-mRNA splicing. U1A protein also binds to the 3' untranslated region (3'UTR) of its own pre-mRNA, inhibiting polyadenylation of the 3'end and thereby downregulating its own expression. The 3'UTR folds into an evolutionarily conserved secondary structure with two internal loops; one loop contains the sequence AUUGCAC and the other its variant AUUGUAC. The sequence AUUGCAC is also found in hairpin II of U1 snRNA; hence, U1A protein recognizes the same heptanucleotide sequence in two different structural contexts. In order to better understand the control mechanism of the polyadenylation process, we have built a model of the U1A protein-3'UTR complex based on the crystal structure of the U1A protein-hairpin II RNA complex which we determined previously.
In the crystal structure of the U1A protein-hairpin II RNA complex the AUUGCAC sequence fits tightly into a groove on the surface of U1A protein. The conservation of the heptanucleotide in the 3'UTR strongly suggests that U1A protein forms identical sequence-specific contacts with the heptanucleotide sequence when complexed with the 3'UTR. The crystal structure of the hairpin II complex and the twofold symmetry in the 3'UTR RNA provide sufficient information to restrict the conformation of the 3'UTR RNA and have enabled us to build a model of the 3'UTR complex.
In the U1A-3'UTR complex, sequence-specific interactions are made entirely by the conserved heptanucleotide and the last base pair (C:G) of the stem. The structure is stabilized by protein-protein contacts and by electrostatic interactions between basic amino acids of the protein and the phosphate backbone of the RNA stem regions. The formation of a protein dimer necessary for the inhibition of poly(A) polymerase requires a conformational change of the C termini of the proteins upon RNA binding. This mechanism could prevent the inhibition of poly(A) polymerase by free U1A protein. The model is consistent with biochemical data, and the protein-protein interactions within the 3'UTR complex account for the cooperativity of U1A protein binding to the 3'UTR. The model also serves as an important structural guide for designing further experiments to understand the interaction between the U1A-3'UTR complex and poly(A) polymerase.
人U1A蛋白与U1小核RNA(snRNA)的发夹II结合,并与其他蛋白质一起形成前体mRNA剪接所必需的U1 snRNP。U1A蛋白还与其自身前体mRNA的3'非翻译区(3'UTR)结合,抑制3'端的多聚腺苷酸化,从而下调其自身表达。3'UTR折叠成具有两个内部环的进化保守二级结构;一个环包含序列AUUGCAC,另一个包含其变体AUUGUAC。序列AUUGCAC也存在于U1 snRNA的发夹II中;因此,U1A蛋白在两种不同的结构背景下识别相同的七核苷酸序列。为了更好地理解多聚腺苷酸化过程的调控机制,我们基于先前确定的U1A蛋白-发夹II RNA复合物的晶体结构构建了U1A蛋白-3'UTR复合物模型。
在U1A蛋白-发夹II RNA复合物的晶体结构中,AUUGCAC序列紧密地契合在U1A蛋白表面的一个凹槽中。3'UTR中七核苷酸的保守性强烈表明,U1A蛋白与3'UTR复合时与七核苷酸序列形成相同的序列特异性接触。发夹II复合物的晶体结构和3'UTR RNA中的二重对称性提供了足够的信息来限制3'UTR RNA的构象,并使我们能够构建3'UTR复合物模型。
在U1A-3'UTR复合物中,序列特异性相互作用完全由保守的七核苷酸和茎的最后一个碱基对(C:G)形成。该结构通过蛋白质-蛋白质接触以及蛋白质的碱性氨基酸与RNA茎区域的磷酸骨架之间的静电相互作用而稳定。抑制多聚(A)聚合酶所需的蛋白质二聚体的形成需要蛋白质的C末端在RNA结合时发生构象变化。这种机制可以防止游离的U1A蛋白对多聚(A)聚合酶的抑制。该模型与生化数据一致,并且3'UTR复合物内的蛋白质-蛋白质相互作用解释了U1A蛋白与3'UTR结合的协同性。该模型还为设计进一步的实验以理解U1A-3'UTR复合物与多聚(A)聚合酶之间的相互作用提供了重要的结构指导。